
1. Introduction

Drivers and passengers may be injured by a sudden stop or a high speed col-

lision in a vehicle. To prevent such injuries, public security departments require

that all drivers and passengers wear seat belts, which are designed as a buffer

and decrease fatal injuries. Seat belt warning systems are also a mandatory

requirement, which remind drivers to wear a seat belt.

Current seat belt warning systems consist of simple metal sensors installed

in the seat belt buckle. It is easy for drivers to circumvent the sensor tip without

wearing a seat belt. In response to the demands of public security departments,

seat belt detection methods based on surveillance videos have been proposed.

Existing seat belt detection methods are mostly based on edge detection and

the Hough transform method. Guo et al. [1] presented a seat belt detection

system that consisted of two parts, namely, driver area positioning and seat

belt detection. For the driver area, they used a geometric positioning method

based on the proportional relationship with the license plate, windshield, and

vehicle. This algorithm first uses a linear filter in HSV color space to locate the

license plate through horizontal and vertical projections. It then uses an edge

detection operator (e.g., Sobel or Canny) to find the top and bottom edge of

the windshield. Finally, it determines the position of the driver according to

the proportional relationships with the license plate,the windshields, and vehi-

cle. The performance of this method is greatly influenced by the vehicle color.

Additionally, the angle of the camera has too much of an effect to the geomet-

rical relationships that determine the driver area. For seat belt detection, they

used a method based on edge detection and the Hough transform. The image

quality requirement for this method is relatively high.Additionally, a threshold

is set according to a specific image set, which is lack of robustness and hard to

popularize.

To mitigate for the influences of the illumination, vehicle body drivers clothes

and other factors in the seat belt detection process, we propose a seat belt detec-
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tion system based on the convolution neural network (CNN) and SVM. CNN is

a multi-layer neural network that uses supervised learning [2] to extract global

features. Its feature extraction function has a kernel model that implements

convolution and pooling in the hidden layer. The network model uses the gradi-

ent descent method to minimize the loss function, so that it can reverse adjust

the weighting parameters of the networks layers, improving the accuracy of the

network using an iterative training process. Multi-scale CNN feature extrac-

tion [3] is a from-overall-to-part process, in which the classifier can be fed with

the features extracted by multiple stages. The motivation for using features

extracted by multiple stages in the classifier is to provide different scales of

receptive fields to the classifier. This allows the classifier to use, not only high-

level and invariant features with little details, but also low-level features with

precise details. Therefore, we chose Multi-scale CNN combining the global and

the local features to identify seat belt better. First, we run the vehicle detection

and localization processes, which are used to determine the windshield location.

Then several candidate seat belt areas are derived to combine with the vehicle

and windshield positioning results. We obtain the final seat belt detection using

a support vector machine (SVM) classifier.

In this paper, we present a new type of seat belt detection model that cal-

culates multi-scale deep features using a CNN. Unlike the traditional detection

method based on Haar-like [4] features, the CNN has recently been successfully

applied to image recognition [5, 6, 7, 8, 9, 10]. The deep network automatical-

ly extracts multi-layer features from the original image. Typically, numerous

features are extracted by such a network, and they are more efficient than the

traditional subjective features. Inspired by this, we trained a feature extrac-

tion model based on CNN using an image dataset. In this paper, we call these

derived features CNN features.

To determine a more accurate seatbelt position, we must combine its neigh-

boring regions and the whole vehicle body to calculate the features. As a result,

our seat belt detection model detects the belt area, windshield area, and vehi-

cle body. Therefore, we extract multi-scale CNN features for every image from
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three nested and increasingly larger rectangular windows, which enclose the seat

belt area, the windshield area, and the vehicle body area.

In addition to the multi-scale CNN features, we further trained a fully con-

nected neural network. Multi-scale CNN features are fed into connection layers,

which are trained on labeled image data. Thus, these full connection layers act

as a regression, which calculates the detection score of every image region. It

is well known that deep neural networks have at least one full connection layer,

which can be used to train to a high level of regression accuracy.

We have extensively evaluated our CNN-based seat belt detection model

over existing datasets. There is no ready-made seat belt detection database;

therefore, we collected many vehicle images from real road images, which were

provided by the traffic administration, and set up an experimental database.

This database contains belt images and non-belt images, and it includes different

backgrounds, illuminations, and vehicle types.

In summary, this paper makes the following contributions.

(1) We propose a new type of seat belt detection method that incorporates

multi-scale CNN features extracted from nested windows by a deep neural net-

work on multiple full connection layers. The detection score of each detection

window is used to train a SVM classifier.

(2) We designed a complete seat belt detection, which is intuitive, accurate,

and robust.

(3) We constructed a seat belt detection database that includes many ve-

hicles and seat belt areas, which can be used for training detection models in

follow-up studies.

2. Related work

Seat belt detection system typically comprises three parts: vehicle detection,

windshield detection, and seat belt detection. Currently, vehicle and windshield

detection algorithms are mostly based on edge detection algorithms [11]. They

first detect the horizontal and vertical edges of a vehicle image. Then, they
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remove the non-vehicle edges, and calculate the symmetry of the vertical edge.

Finally, they extract the target region, and get the position of the vehicle.

For windshield detection, the result is greatly influenced by the color of the

vehicle body and lighting conditions. In [12], the windshield detection algorithm

based on the HIS color model and genetic algorithms has been proposed. This

algorithm requires many iterations, and it often does not satisfies real-time

requirements. In [13], the authors proposed a vehicle detection method based

on the HSV color model, which successfully detects windshields on dark-colored

vehicle bodies. However, it does not perform well for light-colored vehicles and

strong light conditions. The Adaboost algorithm was used in [14] to measure the

angular point positioning of the windshield. Adaboost [15, 16] is an improved

algorithm based on Boosting [17]. This algorithm is very fast and is extensively

used in object detection and recognition. First, features are extracted from a

large number of windshield samples. These weak classifiers are combined to

derive a strong classifier. Finally, the strong classifier is used to position the

windshield regions.

There is a limited amount of research related to seat belt detection [1].

Most investigations directly used a line detection method based on the Hough

transform. This method is sensitively influenced by vehicle factors such as

the steering wheel and the drivers clothing. Then seat belt detection system

based on a SVM [18, 19, 20] is designed, using a driver positioning method

similar to that in [1]. Some belt related parameters are extracted from the

driver region to compose an eigenvector for training the SVM classifier in the

seat belt detection process. In this paper, we propose a seat belt detection

method that combines an SVM classifier and multi-scale CNN features [21, 22].

This method is robust in different background environments. [23] CNNs have

recently been successfully applied to many visual recognition tasks, including

image classification [8, 24], object detection [6, 25], and scene parsing [5, 26, 23].

Donahue et al [27] noted that features extracted from Krizhevskys CNN trained

on the ImageNet dataset [28] can be repurposed for generic tasks. Razavian

et al. [29] extended those results, and concluded that deep learning using a
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CNN can be a strong candidate for any visual recognition task. However, CNN

features have not been applied to seat belt detection. We propose a simple but

very effective neural network that makes the CNN features more applicable for

seat belt detection.

3. Seat belt detection based on CNN and SVM

Deep learning uses a large number of simple neurons, each of which receives

the output of the lower level neuron. According to the non-linear relationship

between the input and the output, the low-level features are combined into a

higher level abstract representation, which determines the distributed features

of the observation data. Thus, a multi-layer abstract representation is formed

using a bottom-up study. Multi-layer feature learning is an automatic process

without human interventions. According to the learned network structure, the

deep learning process maps the inputs to various feature levels, and uses a

classifier or matching algorithm to classify or identify the output of the top

layer.

We designed and implemented a seat belt detection system based on CNN.

By processing the images captured by road surveillance cameras, we can dis-

tinguish whether the driver is wearing a seat belt. After the captured vehicle

images are sent to the coarse vehicle positioning module, several candidate vehi-

cle areas are found in the images. We then use the coarse windshield positioning

module to find several candidate windshield regions. These results are fed into

the seat belt detection module to find a number of seat belt detection areas.

Finally, we calculate the accurate detection result of the seat belt through post-

processing using an SVM classifier. Figure 1 contains a structural diagram of

the system.

3.1. Deep learning

We consider a system S = (S1, . . . , Sn), which is an n-layer structure. I

is the input to the system, and O is the output. It can be expressed as I →
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Figure 1. Seat belt detection system based on convolution neural network (C-
NN).

S1 → S2 → · · · → Sn → O. If the output O equals the input I, the information

contained in O is the same as the original input, which indicates that there

was no information lost when passing through each layer (Si). That is, O is

another representation of the input, I (the original information). In brief, the

essence of deep learning is that the input is equal to the output for any layer of

an n-layer neural network. Ideally, no human intervention would occur during

the learning process, such that that the network can automatically learn object

features. Given an input I, when we pass through an n-layer system S, we

adjust the system parameters so that the output equals the input. This means

that O is still I. Finally, we get a series of level features for I that correspond

to S1, . . . , Sn

The above concept is based on the assumption that the output is strictly

equal to the input. Equal has two meanings; the output equals to the input

in an abstract sense and not absolutely, and with respect to the extent of the

constraints. For example, it is a complete equal without any ambiguity or an
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equal with appropriate loose conditions. The absolute sense of equal is too

strict; therefore, if the difference between the input and the output is as small

as possible, we can slightly relax these restrictions.

3.2. CNN feature extraction

A CNN is a multi-layer neural network. Each layer is composed of multi-

ple two dimensional planes, and each plane is made up of several independent

neurons. The network includes some simple and complex neurons, denoted as

S-neurons and C-neurons respectively. S-neurons aggregate together to make

up the S-plane, and S-planes aggregate together to build the S-layer, which is

denoted as Us. The C-neuron, C-plane, and C-layer (Uc) are the same. Every

intermediate level of the network is concatenated by the S-layer and C-layer;

however, the input layer contains only one layer, and it directly receives the two

dimensional visual patterns. The feature extraction steps for the samples are

embedded into the interconnected structure of the CNN model.

In a CNN, the input connections between S-neuron are variable, and the

others are fixed. We use usl (kl, n) to represent the output of an S-neuron on

the l level of the kl S-plane, whereas ucl (kl, n) represents the output of the

C-neuron of the kl C-plane. n is a two-dimensional coordinate that represents

the location of the field in the input layer. In the first stage, the receptive field

has a small area, which then increases in level l. The output of the S-neuron is

usl(k, n) = rl(k)Φ


1 +

∑Kl−1

kl−1

∑
v∈Al

al(v, kl−1, k)ucl−1(kl−1, n+ v)

1 +
rl(k)

rl(k) + 1
bl(k)uvl(n)

−1

 (1)

Φ (x) =

x x ≥ 0

0 x < 0

(2)

where al (v, kl−1, k) and bl (k) are the connection coefficients of the excitatory

input and the inhibitory input, respectively. rl (k) is a constant that controls the
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selectivity of the feature extraction. A larger value corresponds to less tolerance

to noise and feature distortions. Φ (x) is an nonlinear function. v is a vector that

represents the relative position of the former neuron in the receptive field, n. Al

determines the size of the feature extraction of the S neuron, which represents

the receptive field of n. Thus, the sum of v also contains all the neurons of the

designated area, and the sum of kl−1 contains all the sub-planes of the former

level. Therefore, the sum term in the numerator is sometimes called the excited

term, and is the sum of the product. The neurons are input into the receptive

field, and the outputs are multiplied by their corresponding weights. uvl (n) is

an assumed inhibitory neuron V, which is located in the S-plane and can be

used to show the inhibitory effect of the network. The output of the V-neuron

is

uvl(n) = (

Kl−1∑
kl−1

∑
v∈Al

cl(v)(ucl−1(kl−1, n+ v))2)
1
2 (3)

where cl (v) contains the weights between the V-neurons.

The output of the C-neuron is

ucl(kl, n) = ϕ

[
1 +

∑Kl

kl−1=1 jl(kl, kl−1)
∑

v∈Dl
dl (v)usl (kl, n+ v)

1 + Vsl (n)
− 1

]
(4)

ϕ (x) =


x

β + x
x ≥ 0

0 x < 0

(5)

where β is a constant. Kl is the number of sub-planes (S) in the l level.

Dl is the receptive field of the C-neuron. Therefore, it corresponds with the

feature size. dl (v) is the weight of the fixed excited connection, and it is a

monotonic decreasing function of |v|. If the kl sub-plane of the S neuron has

received signals from the kl−1 sub-plane, jl (kl, kl−1) = 1, otherwise it is 0.
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4. Multi-scale detection model

Multi-scale theory has been increasingly applied to image processing and

analysis. Analyzing an object at different image scales increases our under-

standing of its semantic information. In the real world, object features at dif-

ferent scales can independently exist within a certain space scope. An object

has different forms when it is observed at different scales. For example, when

observing an object from a distance, we can see large scale features such as

contours and shapes. By taking a closer look, we can see the fine structures of

the object such as its composition and texture. Thus, it is important to choose

an appropriate observation scale for target recognition and understanding.

In computer vision, image representation based on pixel space (pixel scale)

can only be applied to some data level processes. We must also extract image

features at an appropriate scale. Because the images contain variously sized

objects, it is impossible to predefine an optimal scale for analyzing an image.

Therefore, it must consider the image content at multiple scales.

As shown in Figure 2, we built a multi-scale feature extraction model that

contains three CNNs. Each CNN model consists of eight layers, including five

convolution layers and three full connection layers. Features are automatically

extracted from each image using three nested and increasingly large rectangular

windows (the seat belt region, the windshield region, and the vehicle region).

The three features extracted by CNNs are sent to two full connection layers,

and the output of the second full connection is sent to the output layer. Finally,

we use the linear SVM classifier to classify all the sub-blocks.

We use the CNN to extract features from each of the images. As shown in

Fig. 2, we first select candidates for the seat belt region [Figure 2(a)]. In this

region, we can directly observe the seat belt information. We extract features

for the seat belt region using the CNN model. This vector is called Feature A.

If we detect the seat belt region by directly extracting its features, we will

have many wrong detection regions. Therefore, we extract a second feature vec-

tor from a rectangular neighbourhood to improve the accuracy. This neighbour-
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Figure 2. Multi-scale detection model.

hood is the bounding box of the seat belt region and its immediate neighbouring

regions, i.e., the windshield region [Figure 2(b)]. This vector is called Feature

B.

Similarly, using the detected windshield and seat belt regions, we detect the

vehicle region [Figure 2(c)]. The vehicle region features extracted by the CNN

are called Feature C .

We use Feature C to train the vehicle detection model. We combine B and

C to get a new feature W , which is used to train the windshield detection

model. W is defined as

W = νB + µC (6)
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where ν and µ represent the confidences of B and C . The characteristics of

human observations mean that the attentions of the objects are different. For

example, if we want to detect an object in the image, the object region is set as

the target region. A position that is further from the target region has a smaller

weight. Thus we set ν = 0.7 and µ = 0.3.

We use the combination of A, B , and C (Feature S) to train the seat belt

detection model. S is defined as

S = αA + βB + γC (7)

where α = 0.6, β = 0.3, γ = 0.1, which represent the confidences of A, B ,

and C .

5. SVM-based post-processing

In the previous section, we described the algorithm that derives the coarse

positions of the vehicle region, windshield region, and seat belt region using

the CNN. We calculate their detection scores, and then combine them with the

positional relationships among these vehicle components to build the feature

vector. Finally, we use the SVM algorithm for post-reprocessing, and eliminate

incorrect regions.

SVMs is a classical machine learning method based on statistical learning

theory. They were first proposed to solve classification problems. The core idea

is to find an optimal hyperplane for classifying different features. The goal is to

maximize the classification distance between different types of training samples,

and to achieve the best classification.

In this paper, we use three detections (D1, D2, D3) based on the CNN detec-

tion algorithm. D1 represents the vehicle detection result, D2 is the windshield

detection result, and D3 is the seat belt detection result. (B : s) ∈ Di is a

5-dimension feature vector, where B = (x1, y1;x2, y2). (x1, y1) represents the

coordinates of the upper left corner of the detection box, and (x2, y2) are the

coordinates of the bottom right corner. s represents the feature score of each
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part. Coordinate B is normalized by the length and width of the candidate

picture, which satisfies (x1, y1;x2, y2) ∈ [0, 1]. As shown in Figure 3, we build

a 15-dimension feature vector (D1, D2, D3) for the seat belt region. For the

windshield region, we build a 10-dimension feature vector (D1, D2). We then

use a linear SVM to classify the feature vectors of the seat belt region, the wind-

shield region, and the vehicle region. The training data are the labeled values

(D1, D2, D3), which are detected by the CNN algorithm.

SVM

Vehicle

 1D

 Windshield

 1 2,D D

 Belt

 1 2 3, ,D D D
 3 1 1 2 2, ; , :D x y x y s

 2 1 1 2 2, ; , :D x y x y s

 1 1 1 2 2, ; , :D x y x y s

Figure 3. Support vector machine (SVM)-based post-processing.

6. Experimental results

6.1. Dataset

We built two kinds of dataset, a dynamic database and a static database.

For the dynamic database, we collected vehicle images from different road en-

vironments using road surveillance cameras in conjunction with the traffic ad-

ministration department. These data included three kinds of vehicles (large,

medium, and small). We built a database of vehicles that contained 10000 im-

ages, which we used to train the vehicle detection model and the windshield

model. We selected 4000 images with good illumination conditions as training

samples, which contained 2000 belt images and 2000 non-belt images.

Additionally, we installed cameras at several specific crossings to collect

vehicle data for the static database. We selected 200 images of different roads
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as test samples, which contain different illuminations and three kinds of vehicles.

There were 100 belt images, and 100 non-belt images.

6.2. Vehicle and Windshield Detection

We ran three experiments, including vehicle detection, windshield detection,

and seat belt detection. For the vehicle and windshield detection experiments,

we evaluated the results using the detected rate (CIR) and undetected rate

(MIR), defined as

CIR =
Nr

Nt
and MIR =

Nm

Nt
(8)

where Nr is the number of correctly detected images for the target region.

Nm is the number of undetected images. Nt is the total number of tested images,

which satisfies

Nt = Nr +Nm (9)

For the vehicle detection experiment, we selected 6000 vehicle images to train

the model. Then, we selected 2000 vehicle images as test images, and randomly

divided them into 10 sets. Some examples results are shown in Figure 4(a). The

average detection rate was 93.3%, and the average undetected rate was 6.7%.

For comparison, the results of the vehicle detection method based on the

Adaboost algorithm are shown in Figure 4(b). For the same dataset, the average

detection rate was 90.6%, and the average undetected rate was 9.4%.

Our algorithm performed better than the Adaboost algorithm, with a smaller

detection error and undetected rate. Thus, the vehicle detection window is more

suitable for the subsequent windshield detection.

The results of the windshield detection experiments are shown in Figure 5.

We selected 6000 windshield images to train the model, and 2000 images for

testing, which were randomly split into 10 subsets. We combined the vehicle

region features and windshield region features, and input them into the wind-

shield detection system based on deep learning. The average detection rate was
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(a)

(b)

Figure 4. Vehicle detection examples using (a) the deep learning algorithm and
(b) the Adaboost algorithm.

93.6%, and the average undetected rate was 6.4%.

6.3. Seat Belt Detection

For the seat belt detection experiments, we evaluated the system using the

CIR, false positive rate (WIR), and MIR, defined as

CIR =
Nr

Nt
,WIR =

Nw

Nt
and MIR =

Nm

Nt
(10)

where Nr is the number of correctly detected images for the target region.

Nw is the number of non-belt images that were incorrectly detected as being
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Figure 5. Windshield detection examples using the deep learning algorithm.

belt images. Nm is the number of the belt images that were incorrectly detected

as non-belt images. Nt is the total number of test images, which satisfies

Nt = Nr +Nw +Nm (11)

We selected 4000 seat belt region images to train the model, including 2000

belt images and 2000 non-belt images. We chose 2000 seat belt regions as test

images, and split them into 10 subsets. Each subset contained 100 belt images

and 100 non-belt images. Combining the seat belt features, vehicle features, and

windshield features, we input them into the seat belt detection system based

on deep learning. Some example results are shown in Figure 6. The average

detection rate was 92.1%, the average false positive rate was 6.4%, and the

average undetected rate was 2.5%.

Finally, we applied the seat belt detection method to the static database.

The images have a different background to the dynamic database, and were only

used to test the method. The training model was the same as before (i.e., from

the dynamic database). We selected 200 images with different illuminations and

three kinds of vehicles. There were 100 belt images and 100 non-belt images.

Table 1 compares the results for the static database using the deep learning and

Adaboost algorithms.

Table 1 shows that our algorithm performed better than the Adaboost al-
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Figure 6. Seat belt detection examples using the deep learning algorithm.

gorithm, with a higher detection rate, and lower false positive and undetected

rates. Furthermore, according to the results of our cross validation, the detec-

tion rate of our algorithm only declined slightly in complex backgrounds and

illuminations, showing that it is robust to environmental conditions.

6.4. SVM Post-processing for Seat Belt Detection

The previous subsections described the results of the coarse positioning of

the vehicle, windshield, and seat belt candidate regions. However, when we

need a high detection rate we also get a lot of false detections. We can use the

positional relationship of the vehicle components combined with the detection

scores to build a feature vector. Then, we use the SVM algorithm for post-

processing.

We ran the experiments using different combinations. The results are shown

in Figure 7. The curves represent the detection results. The further the curve is

from the coordinate axes, the better the result. ′WD+DD+ SD′ represents a

Table 1. Comparison of Seat Belt Detection Results ( % )
CIR WIR MIR

Detection based on deep learning algorithm 80 12 8
Detection based on Adaboost algorithm 73 15 12
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15-dimension feature vector consisting of the outputs of the vehicle detector, the

windshield detector, and the seat belt detector. This vector was used to train

and test the SVM classifier. ′DD + SD′ represents the 10-dimension feature

vector from the windshield and seat belt detectors, and ′SD′ represents the

5-dimension feature vector from the seat belt detector.
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Figure 7. Windshield detection examples using the deep learning algorithm.

Table 2. Comparison of Seat Belt Detection Results ( % )
CIR WIR MIR

Deep learning + SVM-based post-processing 87 9 4
Deep learning 80 12 8

Figure 7 shows that the SVM post-processing step is most effective when us-

ing all the results from the three detectors to form a 15-dimension feature. Thus,

we should use the relative positions of these vehicle components combined with

the detection scores to build the feature vector for the SVM post-processing.

This significantly reduced the false positive and undetected rates.

Therefore, we chose this combination for the SVM post-processing step.
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Table 2 shows the results based on deep learning with and without the SVM-

based post-processing. The SVM post-processing step significantly improved

the performance.

7. Conclusions

Seat belt detection in intelligent transportation systems is an important

research topic. We propose an efficient seat belt detection system. As for

the detection part of our algorithm, we extract features using a multi-scale

deep neural network. This derives features that are more suitable for training

the detection model. In the classification part, we use SVM post-processing,

which improves the robustness of the seat belt detection system. Our method

significantly reduced the false positive and undetected rates.

In the future, we will collect more vehicle images from real road environments

to further expand the training set. This will refine the vehicle classification

standards, and increase the complexity of the background environment. We

will also attempt to further improve the real-time performance. We believe that

the advantages of our method in terms of its real-time performance make it a

feasible approach for practical applications.
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