
TurtleEditor: An ontology-aware web-editor for
collaborative ontology development

Niklas Petersen∗, Gökhan Coskun∗, Christoph Lange∗
∗University of Bonn

Bonn, Germany
{petersen, coskun, langec}@cs.uni-bonn.de

Abstract—Inspired by the shift of vocabulary development
projects towards repository hosting services such as GitHub, we
noticed the lack of ontology-aware editors that can be easily
connected to these repositories. This motivated us to build a web
client optimized for the communication with external repositories
and including specific functionalities to ease the participation in
collaborative ontology development efforts also for non-expert
contributors. This paper describes TurtleEditor, an open-source
web editor, which can load files from, and commit changes to a
central repository and offers features such as syntax highlighting,
syntax checking, auto-completion and a SPARQL endpoint to
query the ontology.

I. INTRODUCTION

Ontologies defined as a specification of a shared conceptual-
ization reflect the consensus among experts in a certain appli-
cation domain. They are thus developed in collaborative efforts
of domain experts and knowledge engineers. Particularly, the
presence of domain experts with little technical background
requires tools that ease contribution and give feedback in case
of faulty changes. Thus, basis features a tool needs to support
include a user-friendly editing surface and the option to query
the vocabulary (for testing).

In recent years, more and more large ontology development
projects have moved towards repository hosting platforms such
as GitHub. (This is especially true for light-weight ontologies
with low expressivity, which we call vocabularies.) Such
hosting services provide, besides a version control system with
the possibility to revert to any previous revision, also project
management features for issue tracking, discussion of changes
and branching for parallel development. Examples of projects
that have moved include schema.org1, FOAF2, BIBO3, DOAP4

and the Music Ontology5.
While recent approaches such as WebProtégé [1] or

VocBench [2] have added support for revision histories and the
possibility to contribute through a web client, their revision
control features are limited. Only VocBench offers a query
service (WebProtégé plans to add it [3]) but is optimized for
vocabulary projects in the SKOS language.

The article is structured as follows: We outline general
requirements as well as requirements of specific use cases in

1https://github.com/schemaorg/schemaorg
2https://github.com/foaf/foaf
3https://github.com/structureddynamics/Bibliographic-Ontology-BIBO
4https://github.com/edumbill/doap
5https://github.com/motools/musicontology

multiple domains in section II. Section III describes in detail
our solution, called TurtleEditor, with all its used libraries
and protocols. In section IV, we compare TurtleEditor to
the existing solutions WebProtégé and VocBench, and finally
conclude in section V together with an outlook to future work.

II. REQUIREMENTS

The development of the TurtleEditor was originally trig-
gered by the requirements of the MobiVoc consortium6. These
requirements were further refined by taking into account
the needs of additional vocabulary development projects in-
cluding SCORVoc for supply chain management, Shopfloor
for industrial production lines, and Odette for master data
management7.

The aim of the MobiVoc consortium is to support the
mobility of people through the mobility of data by develop-
ing a comprehensive vocabulary for all aspects of mobility
ranging from map data, over points-of-interest to gas stations,
electric charging points and traffic management. The consor-
tium comprises a number of stakeholders (car manufacturers,
researchers, IT companies, public administrations), which send
representatives with different backgrounds to the working
groups.

While teaching the Turtle RDF syntax to domain experts
proved feasible in our setting, avoidable faulty commits led
us to identify the following requirements for a tool aiming on
improving the quality of these contributions:

Syntax Checking: In particular, the environment should tol-
erate syntax errors, but it should detect them and highlight
or report them in a comprehensible way.

Auto Completion: Auto completion for terms of established
ontology language such as RDF or RDFS should be made
available.

Syntax Highlighting: Each syntactic construct should be
highlighted with different colors to increase the readabil-
ity and improve the comprehensibility of the content.

Load/Commit from/to Repository: Like the GitHub web
editor used previously by our domain experts, the new
system should also allow loading files from the central
repository, and committing and pushing changes.

6http://www.mobivoc.org/
7See https://github.com/vocol for an overview.

https://github.com/schemaorg/schemaorg
https://github.com/foaf/foaf
https://github.com/structureddynamics/Bibliographic-Ontology-BIBO
https://github.com/edumbill/doap
https://github.com/motools/musicontology
http://www.mobivoc.org/
https://github.com/vocol


Query Service: To allow executing test queries and to
demonstrate the functionality of the vocabulary, a query
interface is required.

III. IMPLEMENTATION

A. Key principles

A key principle of our implementation of TurtleEditor is
to reuse existing mature solutions that are broadly accepted.
Thanks to more and more repository hosting services provid-
ing RESTful interfaces, it is feasible to build customized web
frontends for their functionality, as explained in section III-B.
Similarly, due to the increasing number of available mature
JavaScript libraries, our client-side development can focus on
the actual Turtle editing, as explained in section III-C.

TurtleEditor is designed to be compatible with existing
repository services such as GitHub. Alternative solutions (e.g.
BitBucket8 or GitLab9) also provide a REST API and the
same features identified as useful for vocabulary development.
While we aim at supporting more platforms, as a first step, we
focused on GitHub.

It aims at providing an ontology-aware frontend on the top
of repository services without forcing experienced users to
use it and thus creating a lock-in. One can always clone the
vocabulary’s repository and work locally with one’s preferred
ontology editor, or even resort to using GitHub’s basic web
editor.

Furtermore, as syntax checking is a major requirement for
our solution: While the goal is to improve the quality of
contributions, we nevertheless still allow commits with errors
in them. Influenced by the wiki way [4] prinicple, we prefer
faulty contributions being added and fixed by others over
otherwise useful contributions not being made.

B. Architecture

Figure 1 displays the overall architecture of our proposed
solution including the services that a repository hosting service
is expected to provide, and for which TurtleEditor offers a
frontend. By using the host’s REST interface, TurtleEditor is
able to load all vocabulary sources in the repository and com-
mit changes. Services such as issue tracking, access control, a
wiki for documentation, and the version-controlled repository
itself are thus given by the hosting platform. Therefore,
TurtleEditor only needs to implement the missing features (See
section II) we identified as requirements for our tool.

C. Implementation details

We implemented TurtleEditor by making use of multiple
mature open source libraries.

code editor For the basic in-browser text editor, we used
the JavaScript library CodeMirror10 as a basis. Started in
2007, CodeMirror focuses on extensibility and offers a rich
programming API. Besides being able to handle large texts, it
is able to fulfill two of our requirements: syntax highlighting

8https://bitbucket.org/
9https://gitlab.com/
10https://codemirror.net/

Fig. 1. TurtleEditor Architecture

and auto completion. Syntax highlighting is supported natively
for more than 100 programming languages; Turtle is one of
them. Figure 2 presents on the right side the editor with a live
example of a Turtle vocabulary source.

auto completion CodeMirror allows auto completion by
defining the namespaces internally as hints. Thus, we defined
the rdfs terms which are checked once the auto completition
is triggered. As an example, we defined the keyboard shortcut
Ctrl+Space as the trigger event. Once the prefix rdfs:
is typed and this event is set in motion, TurtleEditor checks
internally for the rdfs namespace for provides the user with
possible terms.

validation Another major requirement is the validation of
the vocabulary. The N3.js11 JavaScript library supports manip-
ulation of RDF on the client side. We implemented the parsing
feature as follows: Every time CodeMirror detects a change
by the author, the entire text source is parsed automatically by
N3.js for syntax errors. In case an error is found, the faulty
code line is highlighted with a red background, and a red
dot is added next to the line number. The author can hover
the mouse over the dot and gets an error description in form
of a tool tip. This gives the author the chance to fix faulty
lines and also to gain a better understanding of the Turtle
language. Nevertheless, as mentioned in our key principles,
syntax checking is only a soft measure and does not prevent
users of committing these changes to the repository.

query service To support querying the live vocabulary
version, we used the rdfstore-js library12. rdfstore-js sup-
ports currently SPARQL 1.0 and most of SPARQL 1.1/Update.
SPARQL 1.1 query is currently being added to the library.
To clearly separate the UI between editing and querying the
vocabulary, we added a separate window13 which displays the

11https://github.com/RubenVerborgh/N3.js
12https://github.com/antoniogarrote/rdfstore-js
13https://rawgit.com/vocol/vocol/master/SparqlProcessor/sparql-processor.html

https://bitbucket.org/
https://gitlab.com/
https://codemirror.net/
https://github.com/RubenVerborgh/N3.js
https://github.com/antoniogarrote/rdfstore-js
https://rawgit.com/vocol/vocol/master/SparqlProcessor/sparql-processor.html


Fig. 2. TurtleEditor front-end

results accordingly. For this, we reused the CodeMirror code
editor to allow editing and executing SPARQL queries. The
results of the query are presented using a HTML table (See
fig. 3).

repository communication The communication to the
repository is realized by using the REST interface provided
by the GitHub repository. This way the user can specify any
given GitHub repository project for TurtleEditor to check out.
All files of the repository are filtered depending on the file
format (‘.ttl’) in order to ignore non-vocabulary sources such
as readme documents. Thus, projects in which the vocabulary
consists of multiple modules can be easily edited by switching
between each file (using a drop-down list). The form is
displayed on the left side of fig. 2.

access control Since the majority of projects hosted on
GitHub are open source, it is not always necessary to log
in in order to checkout the vocabulary sources. However,
committing changes to the repository, as well as reading files
from a private project (non-accessible to the public), requires
a GitHub account. Instead of logging in with credentials
(username and password), we also provide the option to use
a generated personal access token to authenticate with the
GitHub REST API and thus avoid sharing one’s actual creden-
tials with the third party that hosts TurtleEditor. Furthermore,
it is possible to select a specific branch to support non-linear
vocabulary development projects. By default, the ‘master’
branch is selected.

IV. RELATED WORK

While there exist multiple approaches to lower the entry
barrier for collaborative vocabulary development, our review
of related work focuses on the two most popular projects
WebProtégé [1] and VocBench [2].

WebProtégé is a web client, which has its own repository
service called Protégé Server (also used by Collaborative
Protégé [5]), which keeps track of the changes. The client
pings the server every 5 seconds and checks if there are
any new versions. In case of changes, it provides the diff
between the client and server version such that the client can
decide what to keep or discard. Furthermore, a chat service
is included, as well as the possibility to annotate ontology
resources to discuss or propose new changes. WebProtégé
requires the vocabularies to be hosted on their own server.

VocBench also provides a web editor for collaborative
vocabulary development. Driven by the needs of the share-
holders, its user interface is optimized for editing SKOS
thesauri. VocBench’s features include a full history of changes,
a validation and publication workflow and a SPARQL query
service. As a backend, it is necessary to deploy an own server
including a Apache Tomcat14 installation with a MySQL
database15 and Ontotext GraphDB16 installed on a Sesame2
server 17.

14http://tomcat.apache.org/
15https://www.mysql.com/
16http://ontotext.com/products/graphdb/
17http://rdf4j.org/

http://tomcat.apache.org/
https://www.mysql.com/
http://ontotext.com/products/graphdb/
http://rdf4j.org/


Fig. 3. SparqlProcessor front-end

However, none of these tools fulfilled our requirements
entirely. While history tracking is supported by both solutions,
their implementation only covers a subset of the functionality
that Git18 offers and that have proved useful in many collab-
orative vocabulary development efforts (see section I). Thus,
TurtleEditor aims at enhancing the existing features of the
many available repository hosting platforms instead of building
an isolated solution.

Furthermore, the idea of allowing the user to decide where
the vocabulary should be hosted can be considered as a driving
factor of our development.

V. CONCLUSIONS AND FUTURE WORK

Triggered by the need for collaborative ontology editors
with a low-barrier web frontend and a connection to arbi-
trary repository backends, we developed open source solution
TurtleEditor19. We were able to benefit from the existing
functionality of multiple mature JavaScript libraries, and there
are libraries that provide even further features (support for
further syntaxes including JSON-LD, semantic validation and
semantic completion, etc.) to be explored.

Current limitations, which we are planning to address soon,
include the implementation of an interactive workflow to avoid
editing conflicts. Furthermore, we are planning to enhance the
syntactic auto-completion: instead of completing vocabulary
terms based on hard-coded lists, we plan to integrate the
Lookup service provided by Linked Open Vocabularies20,

18https://git-scm.com/
19https://github.com/vocol/vocol/tree/master/TurtleEditor
20http://lov.okfn.org/dataset/lov/

which is hosted and maintained by the Open Knowledge
Foundation. We also plan to auto-generate namespace prefix
bindings based on lookups at http://prefix.cc; for example, that,
when a user types foaf:, the declaration @prefix foaf:
<http://xmlns.com/foaf/0.1/> ., is added.

Finally, we observed that TurtleEditor can be useful in
teaching to familiarize students with the Turtle syntax. It there-
fore seems promising to assess the potential of TurtleEditor
for training one’s Turtle and SPARQL skills in a systematic
evaluation.

Acknowledgements. This work has been supported by the
German Ministry for Education and Research funded project
LUCID, and by the European Commission under the Seventh
Framework Program FP7 for grant 601043 (http://diachron-
fp7.eu).

REFERENCES

[1] T. Tudorache, J. Vendetti, and N. F. Noy, “Web-protege: A lightweight
owl ontology editor for the web.” in OWLED, vol. 432, 2008.

[2] A. Stellato, S. Rajbhandari, A. Turbati, M. Fiorelli, C. Caracciolo,
T. Lorenzetti, J. Keizer, and M. T. Pazienza, “Vocbench: A web ap-
plication for collaborative development of multilingual thesauri,” in The
Semantic Web. Latest Advances and New Domains. Springer, 2015, pp.
38–53.

[3] M. Horridge, T. Tudorache, C. Nyulas, J. Vendetti, N. F. Noy, and M. A.
Musen, “Webprotege: a collaborative web based platform for editing
biomedical ontologies,” Bioinformatics, p. btu256, 2014.

[4] B. Leuf and W. Cunningham, The Wiki Way: Collaboration and Sharing
on the Internet. Addison-Wesley Professional, 2001.

[5] T. Tudorache, N. Noy, J. Vendetti, and T. Redmond, “Collaborative ontol-
ogy development with protege,” Technical report, Standford University,
Tech. Rep., 2007.

https://git-scm.com/
https://github.com/vocol/vocol/tree/master/TurtleEditor
http://lov.okfn.org/dataset/lov/
http://prefix.cc
http://diachron-fp7.eu
http://diachron-fp7.eu

	Introduction
	Requirements
	Implementation
	Key principles
	Architecture
	Implementation details

	Related Work
	Conclusions and Future Work
	References

