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Abstract: In this paper we provide the theoretical and experimental evaluation of fiber 
bending and twisting effects on the group delay performance of a homogeneous 7-core fiber. 
We have experimentally evaluated the differential group delay between the central and outer 
cores for different curvature radii and twisting conditions, demonstrating that fiber twisting 
counteracts the degradation introduced by the curvature itself. These findings are generally 
applicable to time-sensitive application areas such as radio-over-fiber distribution and 
microwave photonics signal processing in fiber-wireless access networks, as well as high-
capacity long-haul digital communications where digital multiple-input multiple-output 
processing may be required. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Multicore fiber (MCF) transmission has been intensively investigated as an attractive 
technology for considerable enlargement of the fiber capacity beyond the Shannon capacity 
limit of optical networks, [1]. In addition to high-capacity digital communications, MCFs 
constitute a promising medium to develop interesting applications such as multi-parameter 
optical fiber sensing [2] and Microwave Photonics (MWP) signal processing [3]. One of the 
major physical impairments that could compromise the MCF performance in the above-
mentioned areas of application relates to the existence of possible bending and twisting 
effects that may affect deployed fiber links. In the context of weakly MCFs, these detrimental 
effects have been studied mainly in relation to the fiber inter-core crosstalk considering both 
homogeneous and heterogeneous core configurations [4,5].  

However, a variety of applications where time-delay control and synchronization play an 
important role require in addition a thorough analysis of the group delay performance of the 
different fiber cores. This is the case of radio-over-fiber transmission and signal processing in 
5G (and beyond) fiber-wireless communications and MWP scenarios. Here, we include 
timing synchronization [6] of wireless signals in MCF-based radio access networks feeding 
multiple input multiple-output (MIMO) antenna systems [7]. Another representative scenario 
is reconfigurable microwave signal processing, where the radiofrequency (RF) signal is 
generated, modified or controlled by optical solutions based on incoherent discrete-time 
architectures [3]. In this regard, we have previously proposed the exploitation of both 
homogeneous and multicore fibers as a compact medium to provide different signal 
processing functionalities [8], including optical beamforming for wireless phased-array 
antennas [9], reconfigurable RF signal filtering [9] or multicavity optoelectronic oscillation 
[10]. 

The influence of fiber bending on the intercore differential group delay (DGD) have been 
previously addressed in [11] for a 10-km 4-core fiber link. There, the authors realized that the 
measured bending-induced DGD was lower than the one predicted from simulation, what 
they attributed to possible fiber twisting one will expect in a 10-km link. Nevertheless, this 
statement has not been corroborated by providing either the pertinent theory or the 
experimental demonstration for different levels of twisting and bending. 
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index profile distribution by using the proper characteristic equation to calculate the 
parameter ueq, even considering multi-layer refractive profiles as derived in [14]. 

From Eq. (1), we see that the highest variation on the equivalent refractive index due to 
fiber curvatures occurs when the core forms an angle of θ = kπ, k ϵ Z, to the curvature plane. 
In addition, as Fig. 1(b) shows, the equivalent refractive indices of cores located in the 2nd and 
3rd section quadrants decrease their values with respect to the equivalent straight fiber, while 
those located in the 1st and 4th quadrants increase their refractive indices. In addition, Eqs. (2) 
and (3) show that this effect is also translated to the core phase propagation constant and the 
group delay. Actually, the phase propagation constant variation due to fiber curvatures has 
been widely studied in many works, [15,16], but there is a lack of investigation on how 
curvatures affect to the group delay.  

The effect of fiber twisting with a constant twist rate γ can be understood as a linear 
rotation of the fiber cross section along a given fiber length L; in other words, as a linear 
increment of the angle θm for a given core m. If we applied an ideal curvature with a fixed 
bending radius over the whole fiber length, the angle θm of each core m would be preserved. 
The DGD between the outer cores and the central core would then accumulate linearly with 
the fiber length unless that core m is placed at an angle θ = π/2 + kπ, k ϵ Z (where the core 
belongs to the curvature tangential plane and the DGD is cancelled out). We can denote the 
longitudinal evolution of the angular coordinate of core m in the cross-sectional area of the 
fiber as θm = θm,i + γz, being z the longitudinal coordinate and θm,i  the initial angular position 
(i.e., when z = 0). Thus, for a given core m, the DGD with respect to the corresponding 
straight condition τm is a function of z: DGD(z) = τeq,m(z) - τm. After a given propagation length 
L, the accumulated DGD is given by  
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In order to find an analytical solution for the accumulated DGD, we can simplify Eq. (4) if 
we assume that the effective index follows the same equivalent distribution than the refractive 
index of Eq. (1), which is a consistent approximation under weakly guiding condition. Thus, 
we can approximate the equivalent effective index of core m as 
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Substituting Eq. (5) into Eq. (3), the equivalent group delay results 
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and thus, the DGD with respect to the corresponding straight condition is given by 
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For the worst case that gives the maximum value of DGD, i.e. θm,i  = kπ, we have: 
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As Fig. 3 shows, the optical signal coming from a tunable laser is injected into the central 
core (Core 1) and one of the outer cores (Cores 2-7) of the MCF. Prior to each measurement, 
we adjusted the optical paths for the central core to have a differential delay of around 20 ps 
greater than the outer cores. This was done to avoid zero-DGD situations in which the DGD 
measurement method is not accurate. At the fiber output, both signals are coupled together 
and injected into an Optical Spectrum Analyzer (OSA). Sweeping the optical wavelength of 
the laser reveals the interference pattern from which we measure the differential delay 
between both cores, [17]. As an example, Fig. 4(a) represents the interference pattern of cores 
1-2 measured when the fiber is bent at a 25-mm radius within a 10-nm range (from 1545 to 
1555 nm). This pattern is then Fourier transformed into the time domain to obtain the 
temporal representation of Fig. 4(b); the difference between these two peaks determines the 
DGD due to the curvature. 

 

Fig. 4.  (a) Interference pattern (optical power) measured by the OSA when the fiber is bent at 
a 25-mm radius (upper) and in straight condition (lower); and (b) temporal waveforms 
obtained from the inverse Fourier Transform of the interference patterns when the fiber is bent 
at a 25-mm radius (blue) and in straight condition (orange). 

Table 1 gathers the measured DGD values between the outer and central cores for the 
three bending radii when two different conditions are applied: (a) the fiber is bent among the 
cylinder carefully trying not to induce any fiber twisting; and (b) the fiber is bent while 
forcing an intentional twist. For the forced twist experiments, the fiber twisting was manually 
performed by introducing several intentional rotations distributed along the 1-m fiber while 
fiber winding. We can see as expected that the DGD is bigger as the bending radius is 
smaller, as well as how twisting the fiber produces an important reduction on the core DGDs. 
Slightly asymmetric behavior between the cores with opposite delay variation can be 
attributed to both fabrication mismatches on the core positions (radial, rm, and angular, θm,i) 
with respect to the ideal configuration and also to measurement tolerances. 

Table 1. Normalized inter-core DGD (ps/m) values measured between pair of cores for different bending and 
twisting conditions 

Cores 
No twist  Twist 

25 mm  35 mm 50 mm  25 mm  35 mm  50 mm  

1-2 -3.1 -2.0 -2.7  -1.0 -0.8 -0.7 

1-3 2.1 1.3 -0.4  -0.5 0.1 -0.3 

1-4 4.8 3.5 2.3  0.7 0.9 0.2 

1-5 2.2 1.9 2.4  1.0 0.1 0.0 

1-6 -2.4 -1.6 -0.3  0.3 -0.4 0.3 

1-7 -6.0 -4.1 -3.3  -1.2 -1.3 -1.1 

1545 1547.5 1550 1552.5 1555
Wavelength, (nm)

-50

-40

-30

a) b) DGD2 = -3.1 ps

Bent, Rb = 25 mm
Straight
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5. Conclusions 

One of the most important sources of degradation that could compromise the performance of 
time-delay sensitive applications that incorporate MCFs relates to possible bending and 
twisting effects. In this paper, we have evaluated both theoretically and experimentally how 
fiber bending and twisting induce group delay variations between the central and outer cores 
of an MCF. We have obtained analytical expressions for the computation of the bend-induced 
DGD accumulated on a given fiber length for a constant twist rate. We must note that the 
effect of the fiber twist on the intercore DGD has been evaluated in terms of the linear 
rotation of the fiber cross-section area along the fiber. However, we have not considered the 
effect of twist-induced birefringence caused by possible deformations in the ellipticity of the 
cores as a consequence of the applied torsional strain, [19]. 

Experimental comparison of the effect of different twisting conditions was carried on a 1-
m link of homogeneous 7-core MCF for three different bending radii of 25, 35 and 50 mm. 
These effects were also evaluated experimentally in the context of a particular time-sensitive 
scenario, time-discrete microwave signal filtering, where the 7 cores acted as the optical 
carriers for the 7 filter taps. Our results for RF frequencies up to 50 GHz show how even a 
tightly bent 1-m MCF can degrade the performance of this application and how fiber twisting 
is actually beneficial to counteract the group delay variations produced by the fiber curvature. 
These findings are generally applicable to time-delay sensitive application areas such as 
radio-over-fiber distribution and MWP signal processing in fiber-wireless access networks, as 
well as high-capacity long-haul digital communications where digital MIMO processing may 
be required. 
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