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Problem: learning from spherical data

x : S2 → Rd
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More:
I learn a representation of maps
I learn a metric between maps

Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018. 2 / 31



Solution: spherical neural networks

Why a NN? We don’t know the statistics we should be looking for.
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Desideratum 1: equivariant to rotations

convolution

convolution
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I Equivariance for dense tasks:
f(Rx) = Rf(x) ∀R ∈ SO(3)

I Invariance for global tasks:
f(Rx) = f(x) ∀R ∈ SO(3)

Why exploit symmetries?
I reduced sample complexity
I generalization guarantee.
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Desideratum 2: scalable

I Many inferences needed for training.
I Increasingly larger maps.

Figure from https://healpix.sourceforge.io.
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Desideratum 3: flexible sampling

strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).
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Sampling schemes: HEALPix, equiangular, icosahedral, cubed-sphere, etc.
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Partial and irregular sampling.

Equiangular and cubed-sphere figures from Boomsma and Frellsen 2017.
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Method 1: 2D projections

Manifold is locally Euclidean!
Project on 2D tangent planes.

Desiderata
	 Rotation equivariance: hard to properly glue

planes together.
⊕ Scalability: well developed NN architectures

and implementations. Some wastes at
boundaries.

	 Flexibility: only handle compact subspaces.

Charting figure from https://en.wikipedia.org/wiki/manifold.
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Method 2: discretization of continuous domain

Spectral decomposition.

Discretize the continuous problem!
Compute the spherical harmonic transform (SHT),
filter in the spectrum.

Desiderata
⊕ Rotation equivariance: well understood theory.
	 SHT is expensive. Fast transforms exist for

some samplings.
	 Flexibility: unused pixels are mostly wasted.

Figure from https://rodluger.github.io/starry.
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Our proposition: discrete domain

graph G = (V, E , A) with
Aij = exp(−d(zi, zj)/σ)

Domain set of pixels V
topology given by geodesic distances

Data function x : V → R
seen as x ∈ RNpix

Method in a nutshell
1. Model the topology by a graph G = (V, E , A).
2. From it stems a Laplacian, e.g. L = D −A.
3. The Fourier basis diagonalizes the Laplacian.
4. Convolution is a multiplication in Fourier.
5. Spatial implementation for speed,

e.g. gα(L)x =
∑
k αkL

kx.
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Graph construction

I undirected weighted graph G = (V, E , A)

I set V of n = |V| vertices
I set E of m = |E| edges

I weighted adjacency matrix
Aij = exp(−‖zi − zj‖22/σ2)

I diagonal degree matrix Dii =
∑
j Aij

I combinatorial Laplacian L = D −A
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Graph Laplacian
Shuman et al. 2013

L = S>S with S ∈ Rm×n the incidence matrix

I Gradient: z = ∇Gx = Sx ∈ Rm (Sx)(i,j) =
√
Aij(xi − xj)

I Divergence: divG z = S>z ∈ Rn (Sz)i =
∑
j

√
Aijz(i,j)

I Dirichlet energy: ‖∇Gx‖2 = x>Lx =
∑
i,j Aij(xi − xj)2

x>Lx = 0.48 x>Lx = 2.75 x>Lx = 6.88
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Graph Fourier basis
Shuman et al. 2013

Definition: the Fourier basis diagonalizes the Laplacian operator → L = UΛU>

I Graph Fourier basis U = [u1, . . . , un] ∈ Rn×n

I Graph “frequencies” Λ = diag(λ1, . . . , λn)
u>1 Lu1 = 0.00 u>2 Lu2 = 0.10 u>3 Lu3 = 0.10 u>4 Lu4 = 0.20 u>5 Lu5 = 0.38 u>6 Lu6 = 0.38 u>7 Lu7 = 0.48

u>1 Lu1 = 0.00 u>2 Lu2 = 0.33 u>3 Lu3 = 0.44 u>4 Lu4 = 0.86 u>5 Lu5 = 1.50 u>6 Lu6 = 1.59 u>7 Lu7 = 2.35
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0.0

0.4
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Graph Fourier basis on the sphere
Perraudin et al. 2018

I Fourier modes resemble spherical harmonics.
I Graphs approximate manifolds.

Mode 0: =0, |m|=0 Mode 1: =1, |m|=1 Mode 2: =1, |m|=1 Mode 3: =1, |m|=0

Mode 4: =2, |m|=2 Mode 5: =2, |m|=1 Mode 6: =2, |m|=1 Mode 7: =2, |m|=0

Mode 8: =2, |m|=2 Mode 9: =3, |m|=2 Mode 10: =3, |m|=0 Mode 11: =3, |m|=3

Mode 12: =3, |m|=3 Mode 13: =3, |m|=2 Mode 14: =3, |m|=1 Mode 15: =3, |m|=1
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Spherical harmonic transform of the graph Laplacian's eigenvectors.
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Graph Fourier Transform
Shuman et al. 2013

I Graph signal x : V → R seen as x ∈ Rn

I Transform: x̂ = FG(x) = U>x ∈ Rn

I Inverse: x = F−1
G (x) = Ux̂ = UU>x = x

xTLx = 0.48 xTLx = 2.75 xTLx = 6.88
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Filtering

kernel a function g : R+ → R that defines the action of the filter
filter the operator g(L) acting on signals

A signal x ∈ Rn is filtered by the kernel g as:

y = g(L)x = Ug(Λ)U>x

Step by step

1. take the Fourier transform (a change of coordinate): x̂ = U>x

2. take an element-wise product in the spectrum: ŷ = (g(λ1), . . . , g(λn))� x̂
3. take the inverse Fourier transform: y = Uŷ
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Filtering example

xTLx = 61.93

input signal x in the vertex domain
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yTLy = 10.75

filtered signal y in the vertex domain
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Observation: the low-pass filtered signal y is much smoother1 than x!

1lower Dirichlet energy
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Fast filtering
Defferrard et al. 2016

y = g(L)x =
(

K∑
k=0

αkL
k

)
x =

K∑
k=0

x̄k

Recursive computation of x̄0 = x, x̄k = Lx̄k−1.

I K-localized
I Learning complexity is O(K)
I Computational complexity is O(K|E|)
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Pooling
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Desideratum 1: equivariant to rotations

101 102

Degree 

10 2

10 1

100

E
qu

iv
ar

ia
nc

e 
E

rr
or

Khasanova, Frossard
Perraudin et al.
This paper - 8 neighbors
This paper - 20 neighbors
This paper - 40 neighbors

s = 32
s = 64
s = 128

Equivariance error:

Ex,R
(‖RLx− LRx‖

‖Lx‖

)2

Clear tradeoff between cost (num-
ber of neighbors k and vertices n ∝
s2) and equivariance error!
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Desideratum 1: it matters!

accuracy time

Perraudin et al. 2018, 2D CNN baseline 54.2 104ms
Perraudin et al. 2018, CNN variant, k = 8 62.1 185ms
Perraudin et al. 2018, FCN variant, k = 8 83.8 185ms
k = 8 neighbors, optimal t 87.1 185ms
k = 20 neighbors, optimal t 91.3 250ms
k = 40 neighbors, optimal t 92.5 363ms

Lower equivariance error translates to higher performance.
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Tradeoff between cost
and accuracy.
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Desideratum 2: scalable

I Graph convolutions2 cost O(Npix).
I Spherical convolutions cost O(N2

pix) in general, O(N
3/2
pix) for some samplings.
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Graph, poly. order K=15
Graph, poly. order K=5
Partial graph 1/12, K=15
Partial graph 1/192, K=15

2They only involve the multiplications of vectors by a sparse matrix with O(Npix) non-zeros.
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Desideratum 2: it matters!

performance size speed

F1 mAP params inference training

SO(3) [Cohen et al.] - 0.676 1400 k 19.0ms 50 h
S2 [Esteves et al.] 79.36 0.685 500 k 9.8ms 3 h
graph [DeepSphere] 80.65 0.686 190 k 1.6ms 40m

Classification of 3D shapes (SHREC’17): anisotropy is an unnecessary price to pay.

t = 5

= 315

t = 20

= 670

t = 50

= 1080Example graph filters (heat kernel).
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Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01

−20◦C 0◦C 20◦C 40◦C

graph of GHCN stations

This extreme flexibility probably breaks rotation equivariance.
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Experiment: discrimination of cosmological models
Classification of convergence maps created
from two sets of cosmological parameters.

(Ωm, σ8) = (0.31, 0.82) or (0.26, 0.91)

102 103

: spherical harmonic index
10 7

10 6

10 5

10 4

C
(

+
1)

/(2
)

Power Spectrum Density
noiseless, 3-arcmin smoothing, Nside=1024

class 1, m = 0.31, 8 = 0.82
class 2, m = 0.26, 8 = 0.91

Ωm, σ8, smoothing chosen to get identical PS. Maps with identical initial conditions.
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Experiment: discrimination of cosmological models (data)

I 30 N-body simulations per class
⇒ 60 full-sky maps (32 train, 8 val, 20 test)

I resolution of Nside = 1024
⇒ 12 · 106 pixels per map

I How many samples do we have?
Amount of supervision is O(Npix).

#samples #pixels per sample

720 1 · 106 (1/12 ≈ 8%)
2,900 260 · 103 (1/48 ≈ 2%)
12,000 65 · 103 (1/192 ≈ 0.5%)
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Experiment: discrimination of cosmological models (results)
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Order o = 4: 65,536 pixels per samples (1/192 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD

I Difficulty controlled by #pixels per sample and amount of noise.
I Better performance than SVM on PSDs and histograms.

Those statistics destroy too much information.
I Better performance than ConvNet on 2D projections.

Curvature plays a role even on 0.5% of the sphere.
I Global pooling better than fully connected layer. Why?
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Spatial summarization

Goal: get rid of the spatial dimension. How?

x

fully connected f(x) = Ax

global pooling f(x) =
∑
i xi

⇒ invariant to rotations!
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Experiment: climate event segmentation

Segmentation of extreme climate events: tropi-
cal cyclones (TC) and atmospheric rivers (AR).

I >1M spherical maps

I down-sampled to 10k pixels (original 900k)

I 0.1% TC, 2.2% AR, 97.7% background

CAM5 HAPPI20 run 1, TMQ, 2106-01-01

AR
TC

0 kg/m2 40 kg/m2 80 kg/m2
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Experiment: climate event segmentation (results)

accuracy mAP

Jiang et al. 2019 (rerun) 94.95 38.41
Cohen et al. 2019 (S2R) 97.5 68.6
Cohen et al. 2019 (R2R) 97.7 75.9
DeepSphere (weighted loss) 97.8± 0.3 77.15± 1.94
DeepSphere (non-weighted loss) 87.8± 0.5 89.16± 1.37

Mean accuracy (over TC, AR, BG) and mean average precision (over TC and AR).

I More generality is not necessarily helpful.

I Check your loss!
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Take home

I DeepSphere is an efficient CNN for spherical data.

I Graphs encode the geometry. Graph NNs exploit that structure.

I Symmetries (invariants) are a principled way to design NNs.

I Measurements and computations are discrete.

THANKS QUESTIONS?
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Slides https://doi.org/10.5281/zenodo.3548192

Papers Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN,
under review at ICLR, 2020.

Defferrard, Perraudin, Kacprzak, Sgier, DeepSphere: towards an equivariant
graph-based spherical CNN, RLGM workshop at ICLR, 2019.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional
Neural Network with HEALPix sampling for cosmological applications, Astronomy and
Computing, 2019.

Defferrard, Bresson, Vandergheynst, Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering, NIPS, 2016.

Codes https://github.com/SwissDataScienceCenter/DeepSphere
https://github.com/mdeff/cnn_graph
https://github.com/epfl-lts2/pygsp
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