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DeepSphere

a graph-based spherical CNN

Michaél Defferrard

Joint work with Martino Milani,
Frédérick Gusset, Nathanaél Perraudin.
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https://rgl.epfl.ch/courses/VCS19f

Problem: learning from spherical data

x:S2 5 R

intrinsic projection

f(x)
classification  regression
(B o

' &

More:
» learn a representation of maps

» learn a metric between maps

Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018.



Solution: spherical neural networks

Why a NN? We don’t know the statistics we should be looking for.
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Desideratum 1: equivariant to rotations

> Equ1var/ance for dense tasks:
m — Rf(z) VR € SO(3)

> /nvar/ance for global tasks:

= f(z) VR € SO(3)

Why exploit symmetries?
m ‘ » reduced sample complexity
\ \J » generalization guarantee.
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Desideratum 2: scalable

» Many inferences needed for training.

» Increasingly larger maps.

Figure from https://healpix.sourceforge.io.
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https://healpix.sourceforge.io

Desideratum 3: flexible sampling

Partial and irregular sampling.

Equiangular and cubed-sphere figures from Boomsma and Frellsen 2017. o3
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Method 1: 2D projections

Manifold is locally Euclidean!
Project on 2D tangent planes.

Desiderata

© Rotation equivariance: hard to properly glue
planes together.

-~ ceep] @ Scalability: well developed NN architectures
and implementations. Some wastes at
<< > .
boundaries.
< \/’ © Flexibility: only handle compact subspaces.
vV v

Charting figure from https://en.wikipedia.org/wiki/manifold.
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https://en.wikipedia.org/wiki/manifold

Method 2: discretization of continuous domain

Discretize the continuous problem!
‘ Compute the spherical harmonic transform (SHT),
filter in the spectrum.

' O ‘ Desiderata
’ 9 o (:\} ' @ Rotation equivariance: well understood theory.
& SHT is expensive. Fast transforms exist for
Spectral decomposition. some samplings.

© Flexibility: unused pixels are mostly wasted.

Figure from https://rodluger.github.io/starry.
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https://rodluger.github.io/starry

Our proposition: discrete domain

Domain set of pixels V
topology given by geodesic distances

Data functionz:V — R
seen as = € RVpix
Method in a nutshell

1. Model the topology by a graph G = (V, &, A).
From it stems a Laplacian, e.g. L =D — A.

The Fourier basis diagonalizes the Laplacian.

graph G = (V, £, A) with Convolution is a multiplication in Fourier.

Aij = exp(—d(zi, z) /o)

o s b

Spatial implementation for speed,
e.g. go(L)x =3, apLrx.
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Graph construction

undirected weighted graph G = (V, &, A)

set V of n = |V] vertices

set £ of m = |&| edges
weighted adjacency matrix
Ay = exp(=|lz — %3/0?)

diagonal degree matrix D;; = >, Ajj

combinatorial Laplacian L=D — A
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Graph Laplacian

Shuman et al. 2013

L =STS with S € R™*" the incidence matrix

» Gradient: z = Vgo = Sz € R™ (S7) (i 5) = VAij(wi — x5)
» Divergence: divgz= STz € R" (Sz); = ,/ZZJZ(M

> Dirichlet energy: ||Vgz|2 =2 Lz = i Aij (i —z;)?

0.2

0.0

—0.2
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Graph Fourier basis
Shuman et al. 2013
Definition: the Fourier basis diagonalizes the Laplacian operator — L = UAU "
» Graph Fourier basis U = [uy,...,u,] € R™*"

» Graph “frequencies” A = diag(\1,...,A\p)

u;rLul =0.00 u;—Luz =0.10 u;Lua =0.10 uILm =0.20 u;Lu5 =0.38 ugLus =0.38 u;rLu-, =0.48

0.2

0.0

uf Luy = 0.00 uy Luy = 0.33 ug Lug = 0.44 uj Lug = 0.86 ud Lus = 1.50 ug Lug = 1.59 ug Luz = 2.35
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Graph Fourier basis on the sphere

Perraudin et al. 2018

» Fourier modes resemble spherical harmonics.

» Graphs approximate manifolds.

Mode 4: /=2, |m|=2  Mode 5: /=2, |m|=1

1,|m|=1  Mode 3: =1, [m|=0

Mode 6: /=2, [m|=1  Mode 7: =2, |m|=0

Eigenvalues of the graph Laplacian.

graph eigenvectors
°

Mode 9: £=3, |m|=2

Mode 10:

3, |m|=0 Mode 11: /=3, |m|=3

Correspondence

H]

°

°

°

°
8

index:
192 pixels 768 pixels 3072 pixels
0 SH degree ! 11 0 SH degree! 23 0 SH degree a7

Spherical harmonic transform of the graph Laplacian's eigenvectors.

=<

—— 192 pixels
—— 768 pixels
—— 3072 pixels

0 10 20
spherical harmonic degree £
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Graph Fourier Transform
Shuman et al. 2013

» Graph signal z: V — R seen as z € R"”
> Transform: & = Fg(z) = Uz € R?
=Ut=UU"z=q

» Inverse: z = .7-"971(:5)

2T La =0.48

2T L =2.75

2T Le =6.88

0.2

0.0

4

8
graph frequency A

4

8
graph frequency A

4

8
graph frequency A

=

= 0.75 0.75 4 0.75
g

§ 050 0.50 0.50
g 0.25 0.25 0.25
g

g 0.004 0.00 | 0.001
£ o . X
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Filtering

kernel a function g : R™ — R that defines the action of the filter
filter the operator g(L) acting on signals

A signal x € R" is filtered by the kernel g as:

y=g(L)z=Ug(AN)U "z

Step by step

1. take the Fourier transform (a change of coordinate): & = Uz

2. take an element-wise product in the spectrum: § = (g(\1),...,9(\n)) © &

3. take the inverse Fourier transform: y = Uy
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Filtering example

input signal z in the vertex domain signals in the spectral domain filtered signal y in the vertex domain
08 1.0 1 —— input signal & 0.8
Q\\\ 0.6 —— kernel g 06
\ P ’ —e— filtered signal § ’
CRSETITX iltered signal §j
¢ 22 '4“ ‘ 0.4 081 0.4
(] ' \ =
\ NN 02 % 0.2
¥ ', § 061
- 0.0 H 0.0
&\ 8
g‘:“\'\' “ 02 Zoa 0.2
AN, B e o
“‘i‘.’ A —04 & ~04
il 7 0.2 4
[ —0.6 —0.6
-8 o -0.8
2T Ly = T T T T T T Ty =
o La = 61.93 0.0 25 50 75 100 125 v'ly=1075

graph frequency \

Observation: the low-pass filtered signal 3 is much smoother! than z!

lower Dirichlet energy
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Fast filtering
Defferrard et al. 2016

K

K
y=g(L)x = (Z oszk> x = Z T
k=0

k=0

Recursive computation of g = z, %) = LZp_1.
» K-localized

» Learning complexity is O(K)
» Computational complexity is O(K|E|)
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Pooling
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Desideratum 1: equivariant to rotations

Equivariance Error

107t

1072

LS
Khasanova, Frossard
Perraudin et al.
This paper - 8 neighbors
This paper - 20 neighbors
This paper - 40 neighbors

\\

—¥— 5=32
—>— 5=64
—e— 5=128

10t

Degree £

102

Equivariance error:

E <||RLx— LR:::H)2
e R\ — 77—
| L ||

Clear tradeoff between cost (num-
ber of neighbors k and vertices n «
s2) and equivariance error!
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Desideratum 1: it matters!

accuracy  time
Perraudin et al. 2018, 2D CNN baseline 54.2 104 ms
Perraudin et al. 2018, CNN variant, &k = 8 62.1 185 ms
Perraudin et al. 2018, FCN variant, k = 8 83.8 185 ms
k = 8 neighbors, optimal ¢ 87.1 185 ms
k = 20 neighbors, optimal ¢ 91.3 250 ms
k = 40 neighbors, optimal ¢ 92.5 363 ms

Lower equivariance error translates to higher performance.

accuracy [%]
O (e}
o N
N

o]
o]
1

k=8

200 250 300 350
inference time [ms]
Tradeoff between cost
and accuracy.
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Desideratum 2: scalable

» Graph convolutions? cost O(Np;z).

» Spherical convolutions cost O(N2,_) in general, O(Ng/z) for some samplings.

pix

pix

10 4
103 4
1024 —-
10% 4

10° 4

Processing time [s]

1071 4

1072 4

1073 4

Sph. harm., £max = 3Nsjge
Sph. harm., max = 2Nsige
Graph, poly. order K=15
Graph, poly. order K=5

Partial graph 1/12, K=15
Partial graph 1/192, K=15 ";5""9

10° 106
Number of pixels

107

2They only involve the multiplications of vectors by a sparse matrix with O(N,;.) non-zeros.
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Desideratum 2: it matters!

performance size speed

F1 mAP  params inference training

SO(3) [Cohen et al.] - 0.676 1400k  19.0ms 50h
S? [Esteves et al.] 79.36 0.685 500 k 9.8 ms 3h
graph [DeepSphere]  80.65 0.686 190 k 1.6 ms 40m

Classification of 3D shapes (SHREC'17): anisotropy is an unnecessary price to pay.

t=5 t=20 t=>50

/ .f;j;;; ; ;‘i : i : \ / .ﬂ}_.,: . 1.1.jua‘€ \ / : } } b:. E.E'aujué \

Example graph filters (heat kernel).
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Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01 graph of GHCN stations

-20°C 0°C 20°C 40°C

This extreme flexibility probably breaks rotation equivariance.
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Experiment: discrimination of cosmological models

Model 1: Q, = 0.31 05 = 0.82 zoom 10 x 10 d

Classification of convergence maps created e e,
from two sets of cosmological parameters. e

(U, o) = (0.31,0.82) or (0.26,0.91)

Power Spectrum Density
noiseless, 3-arcmin smoothing, Nside=1024

0014 0.029 003 004

Model 2: Q, = 0.26 05 = 0.91 200m 10 X 10 deg
smoothing 1 deg smoothing 5 arcmin

Cp-L-(L+1)/(2-m)

—— class 1, Q, =0.31, 03 =0.82
—— class 2, Q, =0.26, 05 =0.91

1077
102 103
£: spherical harmonic index
{2, 05, smoothing chosen to get identical PS. Maps with identical initial conditions.
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Experiment: discrimination of cosmological models (data)

» 30 N-body simulations per class
= 60 full-sky maps (32 train, 8 val, 20 test)

» resolution of Ngg4. = 1024
= 12 - 100 pixels per map

» How many samples do we have?
Amount of supervision is O(Npz).

#samples  #pixels per sample
720 1-105 (112 ~ 8%)
2,900 260-10% (1/18 =~ 2%)
12,000 65-10% (1/192 ~ 0.5%)
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Experiment: discrimination of cosmological models (results)

Accuracy in %

Order o =1: 1,048,576 pixels per samples (1/12 sphere)

Order o = 2: 262,144 pixels per samples (1/48 sphere)

Order o = 4: 65,536 pixels per samples (1/192 sphere)

=y
95
\\
90 N
—— DeepSphere (FCN variant)
-+~ DeepSphere (CNN variant)
851 o

2D ConvNet (FCN variant)
= 2D ConvNet (CNN variant)
linear SVM on histogram
—e— linear SVM on PSD

Accuracy in %

—— DeepSphere (FCN variant)
-+~ DeepSphere (CNN variant)
—=— 2D ConvNet (FCN variant)
~=<- 2D ConvNet (CNN variant)
—— linear SVM on histogram
—e— linear SVM on PSD

Accuracy in %

—— DeepSphere (FCN variant) X
-+~ DeepSphere (CNN variant)

—=— linear SVM on histogram
—— linear SVM on PSD

0.00 025 050 075 1.00 125 150 175 2.00
Relative noise level

0.00 025 050 075 1.00 1.25
Relative noise level

150 175 2.00

~=+- 2D ConvNet (CNN variant)
Relative noise level

—=— 2D ConvNet (FCN variant)
000 025 050 075 100 125 150 175 2.00

» Difficulty controlled by #pixels per sample and amount of noise.

» Better performance than SVM on PSDs and histograms.
Those statistics destroy too much information.

> Better performance than ConvNet on 2D projections.

Curvature plays a role even on 0.5% of the sphere.

» Global pooling better than fully connected layer. Why?
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Spatial summarization

Goal: get rid of the spatial dimension. How?

fully connected f(z) = Ax

global pooling f(z) =Y, x;

= invariant to rotations!
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Experiment: climate event segmentation

CAM5 HAPPI20 run 1, TMQ, 2106-01-01

Segmentation of extreme climate events: tropi-
cal cyclones (TC) and atmospheric rivers (AR).

» >1M spherical maps

» down-sampled to 10k pixels (original 900k)

> 0.1% TC, 2.2% AR, 97.7% background

[ e—

0kg/m? 40 kg/m? 80 kg/m?
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Experiment: climate event segmentation (results)

accuracy mAP

Jiang et al. 2019 (rerun) 94.95 38.41

Cohen et al. 2019 (S2R) 97.5 68.6

Cohen et al. 2019 (R2R) 97.7 75.9
DeepSphere (weighted loss) 97.8£0.3 77.15+1.94

DeepSphere (non-weighted loss) 87.8+0.5 89.16 & 1.37

Mean accuracy (over TC, AR, BG) and mean average precision (over TC and AR).

» More generality is not necessarily helpful.

» Check your loss!
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Take home

» DeepSphere is an efficient CNN for spherical data.
» Graphs encode the geometry. Graph NNs exploit that structure.
» Symmetries (invariants) are a principled way to design NNs.

» Measurements and computations are discrete.
THANKS QUESTIONS?
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Slides https://doi.org/10.5281/zenodo.3548192

Papers

Codes

Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN,
under review at ICLR, 2020.

Defferrard, Perraudin, Kacprzak, Sgier, DeepSphere: towards an equivariant
graph-based spherical CNN, RLGM workshop at ICLR, 2019.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional
Neural Network with HEALPix sampling for cosmological applications, Astronomy and
Computing, 2019.

Defferrard, Bresson, Vandergheynst, Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering, NIPS, 2016.

https://github.com/SwissDataScienceCenter/DeepSphere
https://github.com/mdeff/cnn_graph
https://github.com/epfl-1ts2/pygsp
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