Presentation Open Access

Putting together wavelet-based scaleograms and convolutional neural networks for anomaly detection in nuclear reactors.

Thanos TAGARIS


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3547655">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3547655</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3547655"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Thanos TAGARIS</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>NATIONAL TECHNICAL UNIVERSITY OF ATHENS</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Putting together wavelet-based scaleograms and convolutional neural networks for anomaly detection in nuclear reactors.</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/754316/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-10-28</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3547655"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3547655</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3547654"/>
    <dct:description>&lt;p&gt;A critical issue for the safe operation of nuclear power plants is to quickly and accurately detect possible anomalies and perturbations in the reactor. Defects in operation are principally identified through changes in the neutron flux, as captured by detectors placed at various points inside and outside of the core. This work presents a novel technique for anomaly detection on nuclear reactor signals through the combined use of wavelet-based analysis and convolutional neural networks. In essence, the wavelet transform is applied to the signals and the corresponding scaleograms are produced, which are subsequently used to train a convolutional neural network that detects possible perturbations in the reactor core. The overall methodology is experimentally validated on a set of simulated nuclear reactor signals generated by a well established relevant tool. The obtained results indicate that the trained network achieves high levels of accuracy in failure detection, while at the same time being robust to noise.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3547655"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.5281/zenodo.3547655</dcat:accessURL>
        <dcat:byteSize>1062584</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3547655/files/ICAAI Presentation.pptx">https://zenodo.org/record/3547655/files/ICAAI Presentation.pptx</dcat:downloadURL>
        <dcat:mediaType>application/vnd.openxmlformats-officedocument.presentationml.presentation</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/754316/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">754316</dct:identifier>
    <dct:title>Core monitoring techniques and experimental validation and demonstration</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
28
4
views
downloads
All versions This version
Views 2828
Downloads 44
Data volume 4.3 MB4.3 MB
Unique views 2525
Unique downloads 44

Share

Cite as