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Abstract  27 

Prokaryotes are extremely abundant in the ocean where they drive 28 

biogeochemical cycles. The recent development and application of –omics 29 

techniques has provided an astonishing amount of information revealing the 30 

existence of a vast diversity of functional genes and a large heterogeneity within 31 

each gene. The big challenge for microbial ecologists is now to understand the 32 

ecological relevance of this variability for ecosystem functioning, a question that 33 

remains largely understudied. This brief review highlights some of the latest 34 

advances in the study of the diversity of biogeochemically relevant functional 35 

genes in the sunlit ocean. 36 

Introduction 37 

The ocean is the largest ecosystem on Earth. Prokaryotes are the most abundant 38 

cells in the ocean (ca. ~1029, [1]) where they are the engines driving nutrient 39 

cycles and energy flow. In the last two decades, molecular studies based on 40 

rRNA genes have unveiled that the phylogenetic diversity of marine 41 

microorganisms is immensely larger than the few thousand species formally 42 

described [2]. After the initial surveys of ribosomal genes, the study of protein-43 

coding genes followed by the development of meta’omics approaches has 44 

opened a window to the exploration of marine microbial diversity at the functional 45 

level. In fact, the first large-scale ocean metagenomic survey identified novel 46 

protein families and added a tremendous diversity to known protein families [3]. 47 
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Hence, the study of functional diversity has improved our view of the roles that 48 

marine microbes play in global biogeochemical cycles.  49 

Some clear examples are the discovery of novel metabolisms, such as 50 

proteorhodopsin-driven photoheterotrophy [4], or the role that urea plays in 51 

nitrification by marine archaea [5]. These studies have shown that prokaryotes 52 

play more functions than previously thought and that there is large sequence 53 

diversity for each gene [6-9]. But, what are the ecological implications of this 54 

variability? Addressing this important question is a major challenge in marine 55 

microbial ecology. 56 

The tremendous functional diversity of marine prokaryotes occurs at different 57 

levels of complexity, such as variability in gene content, differences in operon 58 

structure, heterogeneity in gene sequence, or existence of different proteins 59 

which drive redundant functions. Furthermore, the presence of functional 60 

metabolic genes in viral genomes, such as those reported to be involved in 61 

photosynthesis, carbon or phosphorus metabolism, have added another 62 

dimension to this complexity [10]. Most of the studies conducted so far have 63 

focused on genes that confer an ecological advantage to prokaryotic populations, 64 

such as nitrogen fixation or photoheterotrophy. In this review, we summarize the 65 

current knowledge in prokaryotic (mostly bacterial) functional gene diversity in 66 

relation to the four major marine biogeochemical cycles (carbon, phosphorus, 67 

sulfur and nitrogen) (Figure 1). We focus on the sunlit ocean where most of the 68 

studies have been conducted, and discuss the potential relevance of genetic 69 

diversity for ecosystem functioning. 70 
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Biogeochemically relevant genes in the sunlit ocean 71 

Carbon cycle. The paradigm of the ocean carbon flow depicting phototrophs as 72 

the only autochtonous producers of organic carbon (C) and heterotrophic 73 

bacteria as the consumers fell apart in the last decade. Nowadays we know that 74 

mixotrophy, the ability of an organism to use both light and organic matter to 75 

obtain energy, seems to be the rule rather than the exception in sunlit marine 76 

microbial communities. Since the discovery of a proteorhodopsin (PR) gene in a 77 

metagenomic fragment almost 15 years ago [4], we now know that up to 80% of 78 

bacteria inhabiting surface waters can harbor this gene [11]. Proteorhodopsins 79 

display large genetic diversity [12] that translates for example in different spectral 80 

tuning, likely as an adaptation to absorb the prevalent light wavelengths (blue or 81 

green) found in different marine waters. While this proton pump has been 82 

demonstrated to enhance growth under light in certain marine Bacteroidetes [13], 83 

no direct effect on growth was observed in Pelagibacter, in which, however, PR 84 

increased long-time survival during starvation [14], as was also observed in a 85 

Vibrio isolate [15]. Recently, new types of evolutionarily distinct rhodopsins have 86 

been uncovered which translocate either Na+ or Cl- [16, 17]. Interestingly, 87 

multiple rhodopsin types, each with different ion specificities, can be found within 88 

a single strain of marine Bacteroidetes [17]. However, the ecological implications 89 

of containing as many as three functionally different rhodopsins are unknown. 90 

Rhodopsin is indeed a neat example in which gene diversity likely results in 91 

diverse physiological and ecological functions. Yet, we appear to know only a 92 

small fraction of the functional significance of the diversity of this gene.  93 
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Similarly, aerobic anoxygenic phototrophs (AAPs) can derive a portion of their 94 

energy requirements harvesting light using bacteriochlorophyll a (BChl a). Marine 95 

AAPs contain diverse pufM gene sequences (the phylogenetic marker for AAPs) 96 

as well as puf operon structures that delimit several phylogroups distributed 97 

across the Alpha- and Gammaproteobacteria. Recent experimental work with 98 

isolates has shown that while light is the main factor controlling the regulation of 99 

Bchl a in representatives of the Alphaproteobacteria, this is not the case in the 100 

Gammaproteobacteria [18]. Likewise, evidences that distinct phylogroups have 101 

preferences to live under different environmental conditions [8,19,20] suggest 102 

that different AAPs posses diverse strategies to adapt to a changing environment 103 

and may have different roles in the functioning of the ecosystem. However, a 104 

direct linkage between puf diversity and its relevance in ecosystem function has 105 

not yet been established.   106 

CO lithoheterotrophy has also received attention as a potential form of obtaining 107 

energy for bacterial metabolism [21]. CO is formed through the photochemical 108 

degradation of organic matter in sunlit waters and can be oxidized by means of 109 

the carbon monoxide dehydrogenase encoded by the cox genes [22]. These 110 

genes are structured in operons that form two phylogenetically distinct groups, in 111 

which the gene order also diverges. Some bacterial species contain one operon 112 

from each phylogenetic group, whereas others can contain multiple operons of 113 

the same group. The active site configuration of the two phylogenetic groups also 114 

differs. Although the significance of these distinctions has not yet been resolved, 115 

it is believed that they may affect substrate specificity and activity [22]. 116 
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Nevertheless, although CO oxidation mediated by bacterioplankton is 117 

biogeochemically significant, the energy obtained through this process seems to 118 

have a negligible effect on bacterial metabolism [23].  119 

Besides their ability to obtain energy from light, some heterotrophic bacteria may 120 

obtain additional carbon by fixing CO2 through RuBisCO [24], or anaplerotic 121 

pathways [25]. Nevertheless, mixotrophy is not restricted to heterotrophic 122 

prokaryotes. It was recently shown that Prochlorococcus cells use a sugar 123 

transporter gene to take up glucose to tune their carbon metabolism [26] and 124 

other evidences of organic matter incorporation by cyanobacteria exist [e.g., 27]. 125 

Yet, a major challenge to our comprehension of the global carbon cycle is to 126 

understand bacterial processing of dissolved organic carbon (DOC). DOC is 127 

composed by thousands of compounds, many of them uncharacterized, and 128 

utilized by a diverse community of heterotrophic bacteria with varying enzymatic 129 

capabilities and ecological strategies for carbon metabolism [28]. The number of 130 

studies dealing with specific genes encoding for these enzymatic activities is 131 

notably limited, with the exception of the genes involved in chitin degradation 132 

[29]. Currently, meta’omics allows depicting the diverse enzymes involved in 133 

DOC utilization [30]. However, the functional annotation of the genes encoding 134 

these enzymes is frequently based on distant homology to proteins characterized 135 

in non-marine isolates, which may translate into a misinterpretation of their 136 

function. Besides the utilization of complex DOC compounds, genes encoding 137 

pathways for demethylation and C1 oxidation have been identified in SAR11 and 138 

other marine bacteria like Roseobacter or methylotrophs, supporting the 139 
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hypothesis that C1 oxidation might be a mechanism by which dissolved organic 140 

carbon is significantly recycled to CO2 in the upper ocean [31]. 141 

Phosphorus cycle. Phosphorus (P) availability is one of the dominant selective 142 

forces driving niche partitioning and ecotype divergence in oceanic prokaryote 143 

populations [32]. Inorganic phosphate (Pi) is the preferred source of P for 144 

prokaryotes, and they have evolved mechanisms for monitoring and responding 145 

to fluctuations of this essential nutrient. The Pho regulon integrates the sensing 146 

of Pi availability with co-regulation of genes involved in Pi scavenging (like pstS) 147 

or the use of alternative sources of P, such as phosphoesters (through phoA, 148 

phoX, phoD and other phosphatase genes), phosphonates (phn genes) and 149 

phosphite (ptx genes) [33,34]. Recent studies show that bacteria inhabiting 150 

permanent P-depleted areas of the ocean contain a higher number and diversity 151 

of Pho regulon genes, thereby increasing their ability to obtain P [32]. A recent 152 

study provides a remarkable example among the ubiquitous SAR11, which 153 

despite their streamlined genomes display striking differences in their P-related 154 

gene content. An isolate from the P-rich northeast Pacific Ocean is only able to 155 

grow on phosphate, whereas a strain isolated from the P-deprived Sargasso Sea 156 

can utilize a broad range of alternative compounds for P nutrition [35]. Similar 157 

results have been observed in Prochlorococcus strains pointing out how the 158 

environment shapes the genetic diversity of different bacterial populations 159 

[32,36]. 160 

Sulfur cycle. The marine sulfur cycle has been focus of intense research in the 161 

last years due to the potential role of dimethylsulphide (DMS) in regulating 162 
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climate. Dimethylsulphoniopropionate (DMSP) is released by some 163 

phytoplankton cells and is either demethylated to methylmercaptopropionate 164 

(MMPA), or cleaved to DMS by DMSP lyases [37,38]. DMS is a volatile 165 

compound that is later photo-oxidized to sulfate aerosols that form cloud 166 

condensation nuclei, initiating cloud cover over the oceans which leads to 167 

increases in albedo. As for the other essential nutrients, the combination of 168 

classical techniques and -omics has been crucial for the advancement on the 169 

knowledge of sulfur cycling in the ocean. Metagenomic data revealed that the key 170 

gene in the demethylation process (dmdA) is diverse among different taxa and 171 

can be up to two orders of magnitude more abundant that DMSP lyases [38]. 172 

Indeed, the demethylation pathway provides reduced carbon for energy or 173 

biomass and reduced sulfur that can be incorporated into S-containing 174 

aminoacids or oxidized for energy. Hence, this pathway seems ecologically more 175 

advantageous in oligotrophic environments than the cleavage pathway. 176 

Nevertheless the DMSP lyases are a wide group of enzymes that seem to 177 

catalyze the same reaction, whereas dmdA is the only known demethylase [37].  178 

Nitrogen cycle. Traditionally, Trichodesmium and other heterocyst-forming 179 

cyanobacteria were thought to be the predominant N2-fixing microorganisms in 180 

the ocean [39]. However we currently know that unicellular cyanobacteria such 181 

as Croscosphaera watsonii [40] or the prymnesiophyte symbiont UCYN-A [41], 182 

together with heterotrophic bacteria [6] dominate the diazotrophic community in 183 

ocean surface waters. Furthermore, ammonia-oxidizing archaea were discovered 184 

a decade ago [12] and are now known to be responsible for most of the 185 
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nitrification in the upper ocean [42]. These findings have arisen interest towards 186 

genes involved in N cycling with several studies that have explored the diversity 187 

of nifH (involved in nitrogen fixation) and amoA (involved in ammonia oxidation) 188 

among other genes. Some of these studies have allowed linking gene diversity 189 

with functional significance. For example, a recent study showed that two distinct 190 

types of archaeal amoA genes have different biogeographies, one operating at 191 

medium, and one at low ammonia concentrations [43]. In addition, recent 192 

metagenomic analyses have shown that Thaumarchaeota contain genes 193 

involved in urea transport and degradation (ureA, ureB, ureC genes) and that 194 

these organisms may fuel nitrification in oceanic polar regions [5]. 195 

Towards understanding functional diversity 196 

Rapid technological development has enabled the description of the functional 197 

diversity of ocean microbes. Yet, the astonishing amount of genetic information 198 

generated is not accompanied by a significant improvement in our understanding 199 

of its functional significance and therefore, many relevant ecological questions 200 

remain unsolved. Here, we discuss some of these questions. 201 

What is the significance of the genetic variability for well-studied genes? 202 

Molecular techniques have unveiled the diversity of the key players in marine 203 

biogeochemical cycles and how genetic diversity is structured in relation to 204 

environmental variables. For example, differential effects of abiotic factors on 205 

AAP bacteria harboring different pufM sequences suggest that not all 206 

phylogroups are functionally and ecologically equal [8]. Likewise, experimental 207 
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data have shown that the abundance of different sequence clusters of the 208 

demethylation gene dmdA linked to specific marine taxa including Roseobacter- 209 

and SAR11-like bacteria, correlate with certain environmental characteristics [38]. 210 

A global study of nifH-harboring bacterioplankton has reveled specific 211 

biogeography for different taxa [6]. Additionally, studies on diversity of enzymes 212 

degrading organic compounds show that there is a whole suit of different 213 

enzymes carrying out the same function but with very different kinetics [44], 214 

probably reflecting the heterogeneity of substrate concentration at the microscale 215 

[45]. Microbes may also overcome limitation of enzyme cofactors by swapping 216 

out one metal for another in the same enzyme [46] or synthesizing different 217 

metalloenzymes for the same purpose. For example, calcium based 218 

phosphatases like PhoX and PhoD seem to be prevalent in oligotrophic waters, 219 

as opposed to the classical zinc-binding form of the enzyme (PhoA) [33,47]. 220 

Nevertheless, perhaps the best-known example of the significance of genetic 221 

variability is the case of the rhodopsins, which as seen above, display large 222 

genetic diversity that translates into various physiological and ecological 223 

functions.   224 

What is the function of the astounding number of hypothetical proteins? –Omics 225 

datasets contain thousands of sequences encoding hypothetical proteins whose 226 

characterization requires tedious experimental work. While the genetic 227 

engineering approach is rarely conducted in marine studies, the results obtained 228 

so far stress its value. Heterologous expression was used to prove that 229 

proteorhodopsins are light-induced proton pumps [4] and through mutagenesis 230 
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we learned more about their differential spectral tuning [48]. Functional screening 231 

of fosmid libraries allowed the identification of a phosphonatase pathway as well 232 

as a novel pair of genes that allow utilization of 2-aminoethylphosphonate, 233 

alternative sources of P for marine microorganisms [49]. These approaches have 234 

led to major advances in our understanding of functional diversity and thus, more 235 

effort should be put in applying these techniques to advance in our knowledge of 236 

the functional capabilities within microbial populations.  237 

What genes are actually expressed and what environmental variables regulate 238 

gene expression? Metatranscriptomic studies provide insights into which genes 239 

are transcribed, and therefore likely expressed, in the environment. Comparative 240 

expression studies have evidenced for example that coexisting heterotrophic 241 

bacterial populations exhibit diel oscillations in their expression patterns, 242 

resembling those shown by their photosynthetic counterparts [50], or that 243 

bacterioplankton increase the transcription of genes involved in cell aggregation 244 

when accompanying a phytoplankton bloom [51]. Studies combining both 245 

metagenomics and metatranscriptomics are essential to better understand what 246 

genes are expressed under which circumstances, but these studies are only 247 

starting to appear [52]. Furthermore, current metatranscriptomic studies recover 248 

only a very small percentage of the total pool of transcripts (∼0.000001%, [52]). 249 

Significant gains in the analysis of biogeochemically informative gene expression 250 

patterns require a greater sequencing investment. Initiatives like the global 251 

circumnavigation expedition TARA Oceans [53] are presently applying massively 252 

high-throughput sequencing to describe the functional profiles of the world’s 253 



12 

oceans and promise to greatly advance our understanding of ecosystem 254 

functioning. Yet, to understand what factors drive the observed trends, a precise 255 

characterization of the environment is necessary, something that is not always 256 

conducted.  257 

What mechanisms drive the observed functional genetic diversity? Comparative 258 

gene and genome analyses have revealed the ecological and evolutionary forces 259 

that influence genome content. Genome streamlining seems to be a successful 260 

adaptation to live under permanent low nutrient concentration, as seen in SAR11, 261 

Prochlorococcus [54] and in wide array of marine single amplified genomes [55]. 262 

However, even those reduced genomes display a significant variability in gene 263 

content among closely related populations. As mentioned above, one of the 264 

dominant selective forces driving niche partitioning and ecotype divergence 265 

within these populations is nutrient availability [32]. Indeed, many of the genes 266 

involved in the efficient acquisition of nutrients are horizontally transferred and 267 

often found in genomic islands [32]. For example, certain microdiverse lineages 268 

of uncultured Prochlorococcus harbor a genomic island that contains the genes 269 

necessary to assimilate nitrite and nitrate, as opposed to their cultured 270 

representatives that rely on ammonia [56]. Likewise, alkaline phosphatases 271 

(phoA, phoX and phoD) are not found in SAR11 isolates, but are present in 272 

uncultured representatives of this ubiquitous clade [47,57]. Phosphatases are 273 

needed for the utilization of a major component of the dissolved organic P pool, 274 

and have broad substrate specificity. Therefore, the acquisition of just one 275 

phosphatase gene enables the cell to access a wide spectrum of P compounds, 276 
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which can be very advantageous in oligotrophic environments. Other examples of 277 

horizontally transferred genes are those involved in the adaptation to different 278 

light regimes or in obtaining additional energy from light [59]. Moreover, genomic 279 

islands are enriched in genes encoding hypothetical proteins which could play a 280 

role in increasing bacterial fitness under changing environmental conditions [60], 281 

but determining their function is necessary to confirm this hypothesis. Thus, 282 

despite not being the only mechanism (e.g. mutation), horizontal gene transfer is 283 

largely responsible for the observed diversity.  284 

In summary, although several key questions remain to a large extend 285 

unanswered, the –omics approach provide a framework for evaluating functional 286 

gene diversity in an environmental context while at the same time is a powerful 287 

tool to formulate hypotheses on microbially mediated processes. What the field is 288 

currently lacking is taking a step further to experimentally test –omics emerged 289 

hypotheses. Function-driven metagenomics and combination of –omics with 290 

classical microbiology techniques are necessary to obtain a more comprehensive 291 

view of the functioning of the very complex marine microbial communities, a 292 

relevant matter for marine ecology.  293 
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Figure legends 576 

Figure 1.  Simplified view of major biogeochemical cycles in the sunlit ocean. 577 
Solid lines indicate prokaryotic mediated processes and the key functional genes 578 
involved in the processes are shown in boxes. Asterisks denote groups of genes 579 
with a related function. Briefly, phytoplankton fix carbon through photosynthesis, 580 
incorporate inorganic nutrients and release dissolved organic matter, which 581 
includes dissolved organic carbon (DOC), dissolved organic phosphorus (DOP), 582 
and dissolved organic nitrogen (DON). Certain phytoplankton species also 583 
release dimethylsulphoniopropionate (DMSP). Zooplankton also excretes 584 
dissolved organic matter, including urea. Prokaryotes, especially heterotrophic 585 
bacteria but also certain cyanobacteria, use the organic matter released by 586 
phyto- and zooplankton, and compete with phytoplankton for the inorganic 587 
nutrients. DMSP can be either cleaved by different DMSP lyases (encoded by 588 
ddd genes) to DMS and eventually released to the atmosphere, or demethylated 589 
by dmdA and used by prokaryotes as a reduced sulfur source. DOC is 590 
metabolized by a diverse number of enzymes, such as glucosidases, sulfatases 591 
or chitinases, but only the chitinases genes are well characterised. DOP is mainly 592 
composed of phosphoesters and phosphonates, which to be used require the 593 
action of alkaline phosphatases (phoX, phoA, phoD) and phosphonates genes 594 
(phn genes). The key enzymes for the utilization of DON are aminopeptidases, 595 
but the molecular basis of these enzymes is still largely unknown. Some 596 
heterotrophic bacteria are able to obtain additional carbon by fixing CO2 through 597 
RuBisCO (rbcL) or alternative pathways (see main text for details). Other 598 
heterotrophic bacterial cells can obtain additional energy from sunlight by means 599 
of the proteorhodopsin or the puf operon, or from the oxidation of carbon 600 
monoxide (CO). Prokaryotes can obtain nitrogen from ammonia (NH4

+) or nitrate 601 
(NO3

-), and some cyanobacteria and heterotrophic bacteria are capable of fixing 602 
N2 by means of nitrogenases (nif). The oxidation of ammonia in the sunlit ocean 603 
is mainly performed by archaea by means of the amoA gene, and the 604 
degradation of urea (ure genes) plays a major role in fuelling this process. 605 
Viruses lyse prokaryotic and eukaryotic cells, releasing DOM, particulate organic 606 
matter and nutrients. Viruses also play a crucial role in the exchange of genetic 607 
information among marine prokaryotes. 608 
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