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Abstract— Data-driven process monitoring has benefited from
the development and application of kernel transformations,
especially when various types of nonlinearity exist in the data.
However, when dealing with the multimodality behavior that is
frequently observed in the process operations, the most widely
used radial basis function (RBF) kernel has limitations in describ-
ing process data collected from multiple normal operating modes.
In this article, we highlight this limitation via a synthesized
example. In order to account for the multimodality behavior and
improve the fault detection performance accordingly, we propose
a novel nonstationary discrete convolution kernel, which derives
from the convolution kernel structure, as an alternative to
the RBF kernel. By assuming the training samples to be the
support of the discrete convolution, this new kernel can properly
address these training samples from different operating modes
with diverse properties and, therefore, can improve the data
description and fault detection performance. Its performance is
compared with RBF kernels under a standard kernel principal
component analysis framework and with other methods proposed
for multimode process monitoring via numerical examples. More-
over, a benchmark data set collected from a pilot-scale multiphase
flow facility is used to demonstrate the advantages of the new
kernel when applied to an experimental data set.

Index Terms— Fault detection, kernel-based learning methods,
multivariate statistics, nonstationary kernels, process monitoring.

I. INTRODUCTION

KERNEL transformation in multivariate statistical process
monitoring (MSPM) has been popular due to its ability

to handle nonlinearities existing in the process data and its
compatibility with various dimension reduction algorithms,
such as principal component analysis (PCA) [1], partial
least squares (PLS) [2], and independent component analysis
(ICA) [3]. The ability of MSPM in identifying new operating
modes, some of which may reflect faults in the process, has
been improved substantially by adopting the aforementioned
kernel-based approaches. However, nonlinearity in the process
data may be caused by a different process behavior and can
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take various forms. For example, varying loading conditions
or demands of production can mean that a process may run in
multiple different modes even during the course of a typical,
healthy operation. Data recorded from such a process will itself
be multimodal in nature. It is important to be able to account
for this multimodality so that anomalous behavior may be
distinguished from normal operations accurately and robustly.

Though a variety of kernel structures have been proposed
and reviewed in kernel-based learning in general, the radial
basis function (RBF) kernel has been the most widely used.
While its advantages in one-class classification problems have
been previously discussed [4], Li and Yang [5] also highlighted
that a single selected RBF kernel is usually not the most
effective for detecting various faults. Moreover, the separa-
bility of data could be even worse after kernel projection
when an inappropriate kernel is used [6]. Recently, several
efforts have been made to apply kernel-based approaches to
multimodal process monitoring [7]–[12]. Though still using
RBF kernels, these approaches adopt localization factors, such
as just-in-time and nearest neighbors, to calculate a revised
kernel matrix, indicating that on their own, RBF kernels may
not be able to fully capture the covariance existing between
samples due to their inadequacy in considering varying data
behavior caused by different operating modes. It will be
demonstrated later in this article that a single RBF kernel
is not sufficient to describe the normal data set if the data
are collected from multiple normal operating modes. Similar
issues that exist in data explanation and modeling based on
RBF kernels, such as spatially varying length scale and inho-
mogeneity of covariances, have been reported in the areas of
geostatistics [13], terrain surface estimation [14], and natural
language modeling [15].

The reason that stationary kernels, such as the RBF kernel,
are insufficient is that the multimodality issue may lead to
the covariance structure of process variables varying between
operating modes. The nonstationary kernel is proposed to
cope with this issue. Though a generic formulation of such
nonstationary kernels based on convolution is available in [16],
in practice, a parameter tuning step is necessary [14], [15].
Amari and Wu [17] proposed a revised kernel structure that
included a data-dependent weighting function to the origi-
nal RBF kernel. This structure has been applied to MSPM
[18], [19]. However, it is also necessary to determine the
data-dependent weighting function via a separate optimization
step [6], [20]. Other kernel formulations have been explored
for various aspects of the kernel-based approach. For example,
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Fig. 1. Flowchart of the kernel PCA.

spectral mixture kernels may improve extrapolation in the
Gaussian process modeling [21]. Multiple kernel learning
approaches that combine existing kernels are reported in [22].

This article proposes a novel formulation of nonstationary
and data-dependent kernel functions that can account for
the varying covariance structure caused by multimodality
without extra parameterization. Since the convolution for-
mulation can generate both the stationary RBF kernel and
nonstationary kernels, we define the nonstationary discrete
convolution (NSDC) kernel as the covariance function of the
outputs of the nonlinear regression with a finite number of
basis functions, yielding the convolution on discrete, finite
support. By using the samples from normal operation as the
centers of the basis functions, the NSDC kernel can improve
the accuracy of kernel-based models in kernel PCA. In contrast
to other nonstationary formulations, this new kernel does not
introduce additional parameters other than the kernel width
used in RBF kernels. Therefore, the NSDC kernel can improve
fault detection performance without causing overfitting issues.

The rest of this article proceeds as follows. First, we briefly
review the algorithm structure of kernel PCA and demonstrate
the limitation of the RBF kernel in accounting for multimodal
data in MSPM using kernel PCA via an illustrative example.
To retain the advantages of the RBF kernel while also making
better use of the multimodal training set, Section III proposes
the NSDC kernel and discusses the selection of the associated
kernel widths. Numerical simulations are used to compare
the anomaly detection performance of the NSDC-kernel PCA
with the RBF-kernel PCA and other approaches proposed for
monitoring multimodal processes. Section IV also compares
the performance of the NSDC kernel and the RBF kernel in
the process monitoring under the kernel PCA framework using
the PRONTO benchmark data set. This article ends with a
discussion of the qualitative comparison with other methods
and the implementation considerations of the NSDC kernel
and the conclusions.

II. LIMITATION OF RBF KERNEL IN MSPM
USING MULTIMODAL DATA

A. Mathematical Preliminary

The general structure of an MSPM algorithm based on ker-
nel PCA is shown in Fig. 1. For simplicity, the measurement
x is taken as a scalar input to the algorithm.

Kernel PCA first projects the measurements x to a higher
dimensional nonlinear variable space � .1 Instead of assuming
functional structures with respect to x for these nonlinear vari-
ables, kernel functions are defined for x in order to obtain K ,
the covariance matrix of unknown nonlinear variables, directly.
For example, K is defined by the RBF kernel function for i th
and j th samples of x in the following equation:

Ki, j = k(x(i), x( j)) = exp

(
− (x(i) − x( j))2

l2

)
(1)

where l2 is the kernel width parameter. In practice, it is
common to assume l2 = δσ 2

x , where σ 2
x is the sample variance

of x and δ is a scaling factor.
It has been proven that PCA can be applied to K and feature

extraction may be realized in the nonlinear variable space by
solving the following eigenvalue problem [24]. Assume that n
samples of x are available for training

nλα = Kα

z =
n∑

i=1

αi ki (2)

where α = {α1, . . . , αn} and ki = {K1,i , K2,i , . . . , Kn,i }.
Therefore, representative features z are extracted from the

nonlinear variable space using K in kernel PCA. Similar to
PCA-based MSPM, these features are further divided into
principal components (PCs) for monitoring systematic errors
and residuals for model-data mismatch according to their
eigenvalues. The PCs and residuals are used for calculating
monitoring statistics T 2 and T 2

E , respectively [25]. When
implementing this MSPM algorithm, the monitoring model is
trained offline using kernel PCA and the control limits of the
monitoring statistics are set. In online monitoring, monitoring
statistics of a new sample are calculated using the same kernel
PCA model and are compared with their control limits for fault
detection. A detailed description of the MSPM algorithm based
on kernel PCA can be found in [26].

B. RBF Kernel Performance in Multimodal Data

The following bivariate model of x = [x1, x2] with four
operating modes is considered, and 100 samples are drawn
randomly from each to formulate the training set, as shown
in Fig. 2.

Mode 1:

x1 = e11

x2 = 1.5x1 + e12 (3)

where e11 ∼ N(0, 1) and e12 ∼ N(0, 9).
Mode 2:

x1 = e21 + 8

x2 = −0.2x1 + 5 + e22 (4)

where e21 ∼ N(0, 2.25) and e22 ∼ N(0, 0.25).

1This projection is different from the kernel mapping that generates spatial
maps representing local image characteristics [23].
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Fig. 2. Trend plot of training set 1.

Fig. 3. Scatter plot of training set 1.

Mode 3:

x1 = e31 + 15

x2 = −x1 + 20 + e32 (5)

where e31 ∼ N(0, 0.25) and e32 ∼ N(0, 0.09).
Mode 4:

x1 = e41 + 9

x2 = 1

3
x1 − 4 + e42 (6)

where e41 ∼ N(0, 1) and e42 ∼ N(0, 0.25).
It may be observed from the trend plot in Fig. 2 and from

the scatter plot in Fig. 3 that the variance of the data set
from Mode 1 is larger than the variances of the other three
sets. In practice, such differences in variance may exist due
to the nonlinearity in the process variables or measurement
instruments. For example, a flow measurement might have
higher measurement variability if the air is entrained in the
process fluid.

The limitation of RBF kernels will be demonstrated via
kernel PCA models trained from this data set. The T 2 statistic
defined after kernel PCA projection represents the Mahanalo-
bis distance defined in the feature space [1]. After obtaining
representative features z, the first r features in z that hold
more than 99% of the overall variability in the eigenvalues
are selected as PCs and are used for T 2 calculation. In order
to show the boundaries for anomaly detection, 95% control
limits of T 2 obtained after kernel PCA with different scaling
factors δ are visualized alongside the original samples.

Fig. 4. Control limits of T 2 obtained by RBF kernels for training set 1.

When inspecting Fig. 4, sample A may be considered as
belonging to Mode 1 and sample B may be considered to
be an anomaly because it cannot be clearly associated with
any existing mode. While sample B can only be detected
when δ = 0.1, sample A will be identified as anomalous
due to the overfitting issue of the same model. Therefore,
monitoring models obtained by kernel PCA with RBF kernels
have limitations when applied to this data set.

It can be observed that large δ values will result in overly
relaxed detection boundaries that cannot detect the transitions
and/or deviations from normal operating modes (δ = 1, 5); on
the other hand, the number of PCs retained after kernel PCA
model increases rapidly and will soon result in overfit models
as δ reduces (δ = 0.5, 0.1). In summary, the model accuracy
for the multimodal data set may be limited if trained using a
single RBF kernel.

III. NSDC KERNEL

The major notations used in this section are as follows:

1) x ∈ R
m = {x1, x2, . . . , xm}: a vector with m measured

process variables;
2) C ∈ R

m×n: the data set from normal operations with n
samples of x used for training the model;

3) y ∈ R: a variable defined in the nonlinear space �(x);
4) φ(x) : a function of x that is used as a basis function

to reconstruct y;
5) l2: kernel widths for RBF and NSDC kernels.

A. NSDC Kernel as a Covariance Function

Equation (7) gives a regression model using p basis func-
tions φi (x), where i = 1, 2, . . . , p

y =
p∑

i=1

wiφi (x) (7)

where x ∈ R
m is the model input and y ∈ R is the model

output. wi ∼ N(0, σ 2
w) are the regression coefficients with the

i.i.d. Gaussian distribution corresponding to basis functions
φi (x) for i = 1, 2, . . . , p.

The covariance of two new outputs, y and y∗, can be
calculated as a function of input samples, namely, x and x∗.
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This is known as the kernel function

cov(y, y∗) = k(x, x∗)

= E

[ p∑
i=1

wiφi (x)

p∑
i=1

wiφi (x∗)
]

= �T (x)E[wT w]�(x∗) (8)

where �(x) = {φ1(x), φ2(x), . . . , φp(x)}. w =
{w1, w2, . . . , wp} is the coefficient vector, and E[wT w]
denotes the expectation of wT w. Since wi are the i.i.d.
Gaussian distributed with variance σ 2

w , (8) can be written as

cov(y, y∗) = σ 2
w

p∑
i=1

φi (x)φi (x∗). (9)

When the RBF is adopted in (7) with c(i) as its center,
the covariance of y and y∗ is

cov(y, y∗) = σ 2
w

p∑
i=1

[
exp

(
− (x − c(i))T (x − c(i))

l2

)

× exp

(
− (x∗ − c(i))T (x∗ − c(i))

l2

)]

(10)

where c(i) is the center of the i th RBF.
When an infinite number of basis functions are considered,

i.e., p → ∞, all c(i) are allocated evenly from −∞ to ∞ and
dc = c(i+1) − c(i). Equation (10) becomes

cov(y, y∗) = σ 2
w

∞∑
i=1

φc(i) (x)φc(i) (x∗)

= σ 2
0

∫ ∞

−∞
[φc(x)φc(x∗)]dc

= √
πlσ 2

0 exp

(
− (x − x∗)T (x − x∗)

l2

)
(11)

where σ 2
w is selected as (σ 2

0 /p) to avoid the covariance value
approaching to infinity (see the Appendix). Equation (11) is
the convolution of two Gaussian functions. This convolution
formulation leads to a scaled and multivariate formulation
of the RBF kernel function presented in (1). The covari-
ance matrix K in kernel-based methods can be calculated
accordingly.

Like the RBF kernel [see (11)], the NSDC kernel also
derives from (10). Instead of having an infinite number of
centers allocated from −∞ to ∞, the data dependence in
the kernel function can be reflected by selecting only training
samples as the centers of the basis functions. Assuming that P
clusters of normal training samples obtained from P operating
modes exist in C ∈ R

m×n , i.e., C = C1
⋃ · · · ⋃ CP , the kernel

function can be defined with C as its support

kNSDC(x, x∗) = cov(y, y∗) = σ 2
0

n

n∑
i=1

φc(i) (x)φc(i) (x∗)

(12)

where c(i) ∈ C. It is important to note that the number of
basis functions is also equal to n, the number of samples

from normal operating modes. The univariate and multivariate
solutions to the discrete convolution structure in (12) will yield
the new NSDC kernel function. For conciseness, we denote
kNSDC as k from now on.

B. Univariate Formulation

For simplicity, we first assume x to be univariate. By using
RBFs in (12), the NSDC kernel can be derived as

k(x, x∗) = σ 2
0

n

n∑
i=1

[
exp

(
− (x − c(i))2

l2

)

× exp

(
− (x∗ − c(i))2

l2

)]

= σ 2
0 exp

(
− d2

2l2

)

×1

n

n∑
i=1

exp

(
−

(
c(i) − 1

2 (x + x∗)
)2

1
2 l2

)
(13)

where d = x − x∗ is the distance between x and x∗. This new
kernel has a similar formulation to the RBF kernel. However,
given ci ∈ C, the weighting coefficient

1

n

n∑
i=1

[
exp

(
−

(
c(i) − 1

2 (x + x∗)
)2

1
2 l2

)]

is proportional to the conditional likelihood of (x + x∗)/2
given the training set C , PKDE ((x + x∗)/2|C), using kernel
density estimation. Therefore, the extra weighting coefficient
makes this new kernel dependent on the training set C .
In addition, this kernel is nonstationary as it is dependent not
only on the distance d between two input samples but also on
the locations of these samples.

Moreover, when considering the autocovariance of a single
sample x∗, d = 0 and its mean is x∗

k(x∗, x∗) = σ 2
0

n

n∑
i=1

exp

(
− (c(i) − x∗)2

1
2 l2

)
. (14)

The autocovariance of x∗ is, therefore, proportional to the
conditional likelihood of x∗, given the training set C.

C. Multivariate Extension

For the multidimensional case, x is taken to be an m-
dimensional vector. The NSDC kernel is, thus, given as

k(x, x∗) = σ 2
0

n
exp

(
− dT d

2l2

)
n∑

i=1

exp

×
(
−

(
c(i)− 1

2 (x+x∗)
)T

(c(i) − 1
2 (x + x∗))

1
2 l2

)
.

(15)

Similar to the univariate case, this revised kernel function
is the product of the RBF kernel with respect to the distance
d = x − x∗ and the likelihood of the mean (x + x∗)/2, given
C using kernel density estimation.
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D. Specification of Kernel Width

Due to the multimodal nature of the training set, the ideal
kernel width, which represents the rate of covariance of two
projected samples decreasing with respect to the distance
between the original samples, may vary because of: 1) dif-
ferent underlying mechanisms of each operating mode and
2) different variances of individual variables in the same
operating mode. Therefore, it is necessary to specify the kernel
widths properly.

1) Kernel Widths for Individual Variables: RBF kernels
based on the Mahanalobis distance have been investigated
as an approach for estimating the kernel width of variables
and avoiding the optimization of kernel width parameters
[27], [28]. Similarly, in the NSDC kernel, the kernel width can
be estimated by the covariance matrix of process variables and
a global scaling factor. By introducing the m × m covariance
matrix 
 = cov(x), the basis function φc(i) (x) will be revised

φc(i) (x) = exp

(
−1

δ
(x − c(i))T 
−1(x − c(i))

)
. (16)

The NSDC kernel is derived accordingly

k(x, x∗) = σ 2
0

n

n∑
i=1

[
exp

(
− 1

2δ
dT 
−1d

)

× exp

(
−2

δ

(
c(i) − x + x∗

2

)T

× 
−1
(

c(i) − x + x∗

2

) )]
. (17)

The covariance matrix 
 can be estimated using the sample
covariance of the training set. The scaling factor δ is the only
parameter to be specified.

2) Kernel Widths for Operating Modes: Kernels based
on the Mahanalobis distance have been widely studied and
applied to different areas in the literature. However, multi-
modal behavior in the process data is less studied because the
training clusters are not represented explicitly in the kernel
function. When a priori information about data clusters with
respect to operating modes and transition periods is available,
it is possible to assign an individual covariance matrix 
p

for the pth cluster Cp with n p samples in order to represent
different operating modes. The basis function for the pth
cluster is

φc(i)
p

(x) = exp

(
−1

δ

(
x − c(i)

p

)T

−1

p

(
x − c(i)

p

))
(18)

where c(i)
p ∈ Cp .

The kernel function can be constructed accordingly

k(x, x∗) = σ 2
0

n

P∑
p=1

[
exp

(
− 1

2δ
dT 
−1

p d
)

×
n p∑

i=1

exp

(
−2

δ

(
c(i)

p − x + x∗

2

)T

× 
−1
p

(
c(i)

p − x + x∗

2

) )]
(19)

where 
p = cov(x) such that x ∈ Cp can be estimated by
the sample covariance of the pth data cluster and the scaling
factor δ. In particular, when the data clustering information is
not available, the NSDC kernel can still be implemented by
assuming P = 1, yielding (17).

To summarize, the new NSDC kernel adopts the sample
covariance matrices of each data cluster in its formulation.
In this formulation, the scaling factor δ regulates the overall
behavior of the NSDC kernel, while the nonstationary covari-
ance structure is captured by the varying sample covariances.
Consequently, compared to the RBF kernel, the NSDC kernel
can handle the nonstationary behavior caused by multiple
operating modes without introducing additional parameters.

E. Monitoring Statistics

Under the kernel PCA framework presented in Section II-A,
we apply PCA to the kernel matrix K obtained by the
NSDC kernel for feature extraction. Assume that the training
data set is [x(1), x(2), . . . , x(n)] ∈ R

m×n ; q features, namely,
z(1), z(1), . . . , z(q), are obtained by applying PCA to its kernel
matrix K such that Kij = k(x(i), x( j )). Following the algo-
rithm structure in Fig. 1, the sum of squares of Mahanalobis
distances in the PC space and the sum of squares of residuals
are used for quantifying the systematic error and model-data
mismatch. Equations (20) and (21) define these two statistics
with respect to the features

T 2 = zT
R D−1

R zT
R (20)

T 2
E = zT

E zT
E (21)

where zR = {z(1), z(2), . . . , z(r)} are the first r PCs that
explain the majority of variability in the feature space and
zE = {z(r+1), z(d+2), . . . , z(q)} are considered as the residual
vectors with minimal variability; DR is an r × r diagonal
matrix with the first r eigenvalues λ1, λ2, . . . , λr correspond-
ing to zR in the descending order. By introducing T 2 and
T 2

E , both systematic and model-data mismatch faults can be
detected. In order to ensure potential model-data mismatch
behaviors being captured by T 2

E , q should be sufficiently large.
For fault detection, the lower control limit of T 2 and the upper
control limit of T 2

E with a certain confidence level are defined
by applying kernel density estimation to T 2 and T 2

E values
on the training set. The reason for using lower control limits
of T 2 is that due to the multimodality in the data, it is not
appropriate to center the data using their mean. Therefore,
if the data set and the kernel matrix are not centered, the zero-
mean assumption of the PCs is no longer valid. In summary,
a sample is detected as faulty if the following holds for its
monitoring statistics:

T 2 < T 2
LCL or T 2

E > T 2
E,UCL. (22)

F. Parameter Tuning

It has been shown in Section II-B that selections of the
scaling factor δ will result in MSPM models varying signif-
icantly. Recent literature on kernel-based MSPM still adopts
various empirical values of kernel width [29], [30] or empirical
equations [31]. Reference [1] pointed out that the parameter
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Fig. 5. Implementing NSDC-kernel PCA for process monitoring.

tuning of KPCA may lead to improved model robustness,
whereas model sensitivity decreases. In this work, we will
determine the scaling factor for RBF and NSDC kernels by
cross validation using the data set collected from normal
operation; however, instead of minimizing the alarm rate on
the cross-validation set, this strategy aims at a balance between
the sensitivity and the robustness of monitoring models.

We propose to select the parameter that maintains a rea-
sonable alarm level on the cross-validation set. For example,
95% control limits of T 2 statistics, which assumes 5% of the
data in the training set should indicate an anomaly, might be
selected as the control limit. Given that the cross-validation
set is comprised of random samples from the same data as the
training set, ideally, 5% of the cross-validation data should
also be indicated as anomalous. If more than 5% of data
from the cross-validation set are indicated to be anomalous,
this would indicate that the parameters of the model are
inappropriate such that, in practice, the model would be prone
to false alarms, e.g., due to overfitting of the model. On the
other hand, if less than 5% of data from the cross-validation
set are indicated as anomalies, this would indicate that the
parameters of the model are such that the model would be
prone to missed alarms, e.g., due to underfitting. To further
increase the confidence in the obtained anomaly detection
rates, results may be averaged over multiple Monte Carlo
simulations. By repeating this analysis for multiple selections
of the scaling factor δ, it is possible to identify the δ that
optimally describes the training data.

G. NSDC-Kernel PCA in Process Monitoring

The flowchart in Fig. 5 summarizes the procedure of using
the NSDC-kernel PCA for process monitoring. In comparison
with Fig. 1, the NSDC-kernel PCA model is trained using the
clustered multimode training data, and the kernel width δ is
tuned using the strategy introduced previously. When deployed
for online monitoring, the NSDC-kernel PCA model can be
used without additional clustering or tuning.

Fig. 6. Control limits obtained by NSDC kernels.

Fig. 7. Control limits obtained by the NSDC kernel for other nonlinear
examples. (a) Example 2. (b) Example 3.

IV. PERFORMANCE

A. Numerical Simulation

The data are both generated and used in batch for model
training in this case study. The same data set generated
in Section II-B is used for performance comparison of the
NSDC kernel and the RBF kernel. The first r PCs with 99%
accumulated variability are chosen as zR , i.e., r is selected
such that ∑r

i=1 λi∑q
i=1 λi

≥ 99% (23)

where λi is the i th element of q eigenvalues corresponding
to z in the descending order.

The 95% control limits of NSDC-kernel PCA are visualized
in Fig. 6. These control limits identify sample A as a normal
sample and detect sample B as an anomaly. By comparing
Figs. 4 and 6, we can conclude that NSDC-kernel PCA gives
better descriptions of the multimodal training data set and will
significantly improve the anomaly detection performance.

Fig. 7 shows the monitoring contours generated by the
NSDC kernel for two further examples. In these samples,
the data are not clustered in advance. By setting the cluster
number P = 1, one can implement the NSDC kernel defined
by (17) and obtain proper monitoring contours. The contours
also demonstrate that the NSDC kernel can cope with other
types of nonlinearity without considering the varying covari-
ance structures of each data cluster.

These results indicate that the NSDC kernel will yield
a kernel PCA model that generates a better control limit
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Fig. 8. Schematic of the Multiphase flow facility.

than the RBF kernel for anomaly detection of multimodal
data. The NSDC kernel also suffers less from the issues
associated with overfitting or underfitting. Even when there is
no data clustering information available, the performance of
the NSDC kernel will not be significantly compromised. It also
indicates that the NSDC kernel can handle other types of data
nonlinearity in addition to the multiple operating modes.

B. Case Study in Process Monitoring

1) Process Description: We compare the fault detection per-
formance of the RBF-kernel PCA and the NSDC-kernel PCA
using the PRONTO benchmark data set that is established for
algorithm design and validation for process monitoring [32].
This data set was collected sequentially during an experiment
on the multiphase flow facility located at Cranfield Univer-
sity. Being a fully automated industrial-scale pilot plant, this
facility implements mixing, transportation, and separation of
multiphase flows, such as oil, water, and air. Fig. 8 presents
the layout of this facility. One may refer to [32] for further
details about the facility and the benchmark case study.

Table I summarizes the process variables used in this
test. The multimodal behavior is realized by specifying inlet
water and airflow rates according to Table II. A high-density
plot [33] shown in Fig. 9 visualizes the normalized time trends
of process variables measured in normal operating modes.

As shown in Table III, three faults have been seeded
individually by manually opening (for air leakage and diverted
flow) or closing (for air blockage) corresponding valves in both

TABLE I

PROCESS VARIABLES

TABLE II

NORMAL OPERATING CONDITIONS

operating Modes A and B. Starting from the normal operating
condition, the valve opening is changed gradually in order to
simulate the development of incipient faults in real-life process
operations. As an example, Fig. 10 presents the high-density
plot of process variables when Fault 2 was seeded in operating
mode B.
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TABLE III

MANUALLY SEEDED FAULTS

Fig. 9. High-density plot of process variables from normal operations.

Fig. 10. High-density plot of process variables from Fault 2, Mode B.

2) Results: The case study in this work uses both normal
and faulty data from the experiment. Normal data from Modes
A and B are randomly partitioned into training, cross vali-
dation, and test sets with an equivalent amount of samples.
The training and cross-validation sets are used to train the
monitoring model. The monitoring model is then applied to
the test data set and the faulty data for fault detection. The data
are used in batch to train the monitoring model and detect the
faults. Since the temporal correlation is not considered in the
kernel-based approaches, fault detection can also be conducted
using sequential data.

The same strategy as in (23) is adopted for grouping the
features obtained by kernel PCA into PCs and residuals.
The confidence level of control limits for T 2 and T 2

E is set as
95%. To evaluate the performance, the false alarm rate (FAR)
defined in (24) on the cross-validation set is compared over
the scaling factor δ values in Fig. 11

FAR = nFA

nnorm
(24)

where an anomaly is detected if the monitoring statistics of a
test sample fulfill (22); otherwise, the test sample is labeled
as normal. nFA denotes the number of normal samples being

Fig. 11. Alarm rates on cross-validation sets of multiphase flow data.

Fig. 12. Monitoring result for normal data: linear PCA.

Fig. 13. Monitoring result for normal data: RBF kernel.

Fig. 14. Monitoring result for normal data: NSDC kernel.

detected as anomalies, and nnorm denotes the number of all
normal samples. When applied to monitoring, δ is set to
be 60 for the RBF kernel and 100 for the NSDC kernel
according to the strategy proposed in Section III-F. Fig. 11
shows that reduced δ values will lead to larger FARs on
cross-validation sets, of which the samples are supposed to
be normal, indicating the model being overfit. On the other
hand, since the confidence level of control limits is selected
as 95%, FARs below 5% imply that the monitoring model
might have a higher missed detection rate (MDR) and, hence,
be less sensitive to faults when the δ value is large.
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TABLE IV

MONITORING PERFORMANCE

Monitoring statistics of the data set in normal operations
obtained by Linear PCA, RBF-kernel PCA, and NSDC-kernel
PCA are shown in Figs. 12–14. For the clarity of visual-
ization, T 2 statistics are plotted in the logarithmic scale in
Figs. 13 and 14. In Fig. 12, the T 2 statistic obtained by
the linear PCA has a large increase, and the T 2

E statistic has
a larger variance when the process switched from Mode A
to Mode B while the statistics obtained by the RBF-kernel
PCA and the NSDC-kernel PCA do not. Therefore, it is clear
that the influence of multimodality in the training set can be
reduced by applying kernel approaches. Moreover, as shown
in Fig. 13, the T 2

E statistics obtained by the RBF-kernel PCA
has a peak around sample 200 that lasts for approximately
30 samples. This may cause the detection threshold of T 2

E to
be overly relaxed.

The second column in Table IV compares the FARs of the
NSDC and the RBF kernels on the test sets that comprise
normal samples that are not used for model training and
parameter tuning. Since the confidence level is set to be 95%,
the tuning strategy in Section III-F ensures that both the RBF
and the NSDC kernels have an FAR that is close to 5% on
the test set.

The fault detection time (DT), defined by (25), provides
a measure of the sensitivity of the monitoring model in this
example. Since the fault severity increased gradually in the
experiment (e.g., the valve opening sequence in Fig. 15) and
the variation in the process variables may not be visible in
the early stage (see Fig. 10), it is difficult to define the
faulty period clearly. Therefore, the DT is used instead of the
MDR. Due to the persistent existence of the fault, we define
that the fault detection occurs when a consecutive sequence
of 20 samples exceeds the control limits. This reduces the
influence of noise in the process measurements

DT = t (fault detection) − t (fault occurrence). (25)

Table IV shows that the process monitoring model based on
the NSDC kernels is capable of detecting the faults earlier
when air blockage (F2) and diverted flow (F3) occur. Fig. 15
visualizes the sequence of valve opening adopted for seeding
Fault 2 in operating mode B. In Figs. 16 and 17, the monitoring
performance in mode B is compared against this sequence.
In particular, T 2

E statistics can have an earlier detection when
the blockage is less severe. It indicates that at the early
stage of an incipient fault and when the deviation in PCs is
not significant, small model-data mismatches existing in the
process measurements caused by the fault can be captured
by the monitoring model using the NSDC kernel. As a result,

Fig. 15. Valve opening sequence for Fault 2, Mode B.

Fig. 16. RBF Monitoring performance for Fault 2, Mode B.

Fig. 17. NSDC Monitoring performance for Fault 2, Mode B.

the incipient fault can be detected and dealt with before severe
performance degradation occurs in the process.

C. Comparison With Other Methods

Comparisons with other methods proposed for multimode
process monitoring are challenging because it is difficult
to implement and tune each method in a rigorous manner
that ensures a fair comparison. In order to provide a fair
evaluation of the performance of the NSDC kernel relative
to the existing methods, the method is directly compared
with the results reported in recently published approaches that
adapt kernel-based methods for multimode process monitoring
[10]–[12]. The simulated data sets described in each of these
papers form the basis of the comparison. The FAR previously
defined in (24) and the MDR defined in (26) are used to
evaluate the anomaly detection performance

MDR = nMD

nanom
(26)

where nMD denotes the number of anomalous samples not
being detected as anomalies and nanom denotes the total
number of anomalous samples. The MDR is the rate of missed
detections in a test set that includes anomalous samples.

Table V presents the fault detection performance. The kernel
widths of the RBF and the NSDC kernels and the control
limits of T 2 and T 2

E are tuned using the strategy proposed
in Section III-F according to the confidence levels used
in [10]–[12]. The confidence levels of monitoring statistics are
used as the expected FARs for both the cross validation and
the test sets. Therefore, the FAR obtained by NSDC and RBF
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TABLE V

PERFORMANCE COMPARISON WITH THE EXISTING APPROACHES

TABLE VI

COMPARISON OF NSDC AND RBF KERNELS

kernels for the test sets should be similar to the confidence
levels if the monitoring model can describe the normal data
well. The column headed as Other shows the results reported
in [10]–[12] for the respective multimode process monitoring
methods described in each article. It can be seen that the
NSDC-kernel PCA approach achieves lower MDRs than both
the RBF-kernel PCA and the methods presented in [10]–[12].
For the second test case, the NSDC also achieves a smaller
FAR because of the artificial outliers in the training data [11].

V. DISCUSSION AND FUTURE WORK

A. Comparison With the RBF Kernel and Other Methods

Table VI compares the new NSDC kernel with the RBF ker-
nel. The main advantage of the NSDC kernel over the RBF
kernel is that due to the new assumptions in the convolution
kernel formulation, the NSDC kernel is nonstationary and
data-dependent. Hence, the NSDC kernel can handle the
nonstationary covariance caused by multimodality.

Recent works on multivariate approaches for multimodal
process monitoring deal with the multimodality in an ad hoc
way, including the locally weighted approach [11], [30], [34]
and using the local statistics matrix [10] or the residuals
obtained by kernel regression [12] instead of original measure-
ments. For those methods using the data-dependent kernels,
their parameters need to be optimized properly [20]. In this
article, we propose a new and systematic way of formulating
the nonstationary kernel function via convolution and derive
the closed-form solution, i.e., the NSDC kernel. Since the
NSDC kernel only requires one parameter, i.e., the kernel
width to be tuned, it also avoids additional parameterization
of the kernel function and makes the training and online
monitoring procedure easier.

B. Implementation Considerations

One can use the NSDC kernel for data-driven monitoring of
processes with multiple operating modes, especially when the
variations between modes are significant and there exist other

types of nonlinearity in the processes. As shown in Fig. 5,
the multimode training data need to be clustered when training
the NSDC-kernel PCA model. This can be achieved either
by incorporating the prior information of normal operating
modes or by applying unsupervised clustering approaches,
such as the k-means or the Dirichlet Process. Nevertheless,
these clusters do not need to be precise if all data are from
the normal operating conditions when applying the method for
fault detection because the NSDC kernel can deal with other
types of nonlinearity, as shown in Fig. 6. Moreover, the NSDC
kernel can still be used when the clustering information is
unavailable by setting the cluster number to 1.

To further optimize the scaling factor δ, an optimization
problem can be formulated based on the cross-validation
approach proposed in Section III-F. On the other hand,
the scaling factor in NSDC may also allow for domain
knowledge that is usually available in practice. For instance,
if one normal operating mode is considered to be critical such
that any violation or unobserved behavior must be quickly
identified as a fault at the cost of an increased number of
false alarms, and then, a smaller scaling factor for this mode
can be selected in order to improve the sensitivity in its
neighborhood. Conversely, NSDC kernels can also be adjusted
such that a variable with lower measurement reliability can
be downweighted by increasing the scaling factor toward its
direction in all operating modes.

VI. CONCLUSION

This article has presented the NSDC kernel that is a novel
type of the nonstationary data-dependent kernel function that is
better suited for multimodal process monitoring. This NSDC
kernel was defined as a covariance function by the discrete
convolution on the normal data set only. The parameter
specification of this NSDC kernel was also discussed. When
compared to the RBF kernel under the kernel PCA framework,
the NSDC kernel can yield a better monitoring model, which is
robust to overfitting issues and more sensitive in fault detec-
tion. This approach directly benefits process monitoring by
reducing false and missed alarm rates, as demonstrated in the
industrial case study. Moreover, incipient faults seeded during
operation of the industrial-scale multiphase flow facility were
detected earlier using monitoring models based on the NSDC
kernel. Being a data-dependent kernel that can account for
process data from multiple operating modes, the NSDC kernel
has only one parameter to be tuned, making it easier to apply
the NSDC kernel to the data-driven process monitoring. The
results in this article also suggest that use of the NSDC kernel
may not be limited to multimodal process data. In general
pattern recognition problems, if the training set is discrete with
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obvious multiple operating modes or the covariance structure
is nonstationary, the NSDC kernel can be combined with
unsupervised clustering approaches in order to address the
aforementioned issues.

APPENDIX

Considering φc(i) (x) = exp(−((x − c(i))T (x − c(i)))/l2)
in (9), cov(y, y∗) will approach infinity as the number of base
functions p increases, given σ 2 is an arbitrary constant

cov(y, y∗) = σ 2 lim
p→∞

p∑
i=1

exp

(
− (x − c(i))T (x − c(i))

l2

)

× exp

(
− (x∗ − c(i))T (x∗ − c(i))

l2

)

→ ∞. (27)

Since

0 ≤ exp

(
− (x∗ − c(i))T (x∗ − c(i))

l2

)
≤ 1 (28)

the asymptotic behavior of cov(y, y∗) may be approximated
using the triangular inequality

O(p) =
p∑

i=1

exp

(
− (x − c(i))T (x − c(i))

l2

)

× exp

(
− (x∗ − c(i))T (x∗ − c(i))

l2

)
(29)

where O(p) denotes the group of functions with first-order
infinity with respect to p. Therefore, the variance of wi is set
to be (σ 2

0 /p) so as to avoid the divergence of cov(y, y∗).
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