
Deep Learning for Edge Computing: Current Trends,
Cross-Layer Optimizations, and Open Research Challenges

Alberto Marchisio1,*, Muhammad Abdullah Hanif1,*, Faiq Khalid1, George Plastiras2, Christos Kyrkou2,
Theocharis Theocharides2, Muhammad Shafique1

1Technische Universität Wien (TU Wien), Vienna, Austria
2University of Cyprus (UCY), Nicosia, Cyprus

{alberto.marchisio, muhammad.hanif, faiq.khalid, muhammad.shafique}@tuwien.ac.at,
{gplast01, kyrkou.christos, ttheocharides}@ucy.ac.cy

Abstract—In the Machine Learning era, Deep Neural Networks (DNNs)
have taken the spotlight, due to their unmatchable performance in
several applications, such as image processing, computer vision, and
natural language processing. However, as DNNs grow in their complexity,
their associated energy consumption becomes a challenging problem.
Such challenge heightens for edge computing, where the computing
devices are resource-constrained while operating on limited energy
budget. Therefore, specialized optimizations for deep learning have to
be performed at both software and hardware levels. In this paper, we
comprehensively survey the current trends of such optimizations and
discuss key open research mid-term and long-term challenges.

Index Terms—pre-processing, pruning, quantization, DNN, accelerator,
hardware, software, performance, energy efficiency, low power, deep
learning, neural networks, edge computing, IoT.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become popular due to
the (1) availability of large datasets, (2) accessibility of hardware
resources for compute-intensive workloads (like GPGPUs) and (3)
open-source Deep Learning libraries. Nowadays, they are widely used
in several applications like image classification [59], detection [58]
and segmentation [66]. Usually few years are required between the
invention of a novel DNN algorithm and its successful hardware
deployment, as for the case of [34] and [67] implemented in [28].
To achieve high efficiency products, optimizations at different levels
of abstractions are required.

DNNs undoubtedly perform better the larger and deeper they
are, but this effect demands a continuously increased complexity
on the hardware perspective to design specialized accelerators for
Deep Learning. Currently, there are several use-case scenarios where
hardware acceleration is beneficial for DNNs: (1) offline DNN
training in data centers, (2) inference in data centers, (3) online
learning on mobile devices and (4) inference on mobile devices.
While the discussed techniques are beneficial for multiple scenarios,
in this paper, we focus mostly on the 4th scenario. Moreover, besides
the hardware acceleration, it is extremely important to start from an
algorithm which is highly-optimized at the software level, e.g., by
reducing the number of DNN inferences through pre-processing, and
reducing the computations for each inference through pruning and
quantization. Although these kind of optimizations are transparent
while considering inference in edge devices, they are beneficial
to achieve several order of magnitudes of energy improvements.
If matched with specialized hardware accelerators and optimized
dataflows, these improvements will grow further.

After discussing the main scientific questions and challenges
(Section I-A), we survey the current trends of deep learning for
edge computing (Section II). We then present our methodology
(Section III) of different cross-layer optimizations, supported by case
study analyses (Section IV), before raising questions for future deep

*Alberto Marchisio and Muhammad Abdullah Hanif have equal contribu-
tions.

Input

Run-Time Optimization

Pre-Trained Deep
Neural Network

Design-Time Optimizations

Network
Pruning

Network
Quantization

Dataflow Selection for Efficient
Mapping on the DNN Accelerator

DNN Hardware Accelerator

Optimized DNN and
Mapping Strategy

Hardware
Characteristics

Division of the image into tiles
Attention and activity-based tile selection

Stop Sign

In
p

u
t

d
im

e
n

si
o

n

o
f

th
e

D
N

N

Only Selected
Tiles

Output

Fig. 1: Our Flow for Cross-Layer Optimizations for Deep Learning.

learning hardware practitioners about the security (Section V) and
other open research challenges (Section VI). An overview of our
work is depicted in Figure 1.

A. Key Scientific Questions and Associated Challenges

Low Power & Memory Budget: Performing DNN inference on
edge devices, which are typically resource- and power-constrained,
is a challenging task. For example, the ResNet-50 [23] requires more
that 95MB of memory to store the weights and more than 3.8 billion
multiplications to process a single image. Such amount of processing
is infeasible to be deployed in edge devices to return real-time results.

Latency: While mobile voice recognition applications like Ap-
ple Siri, Amazon Alexa and Google Assistant have the processing
based on the cloud, for other critical applications (e.g., autonomous
vehicles, drones, and wearable healthcare devices) the near-sensor
processing is necessary to get a fast response from the DNN, as
well as due to privacy and security reasons. Moreover, not only
latency, but also security and privacy issues motivate near-sensor
processing. Therefore, specialized hardware accelerators are required
to efficiently perform the DNN inference at the edge to meet the
latency, security, and privacy requirements.

Accuracy vs. Speed and Efficiency: High accuracy DNNs are
extremely computational and memory intensive. Even though some
of the recent trends hint towards designing DNNs with small memory
footprint [26] [25], the most promising approach is to compress the
DNN by parameter pruning, sharing and quantization. Several dense
DNN accelerators have been proposed, but to facilitate compression
optimizations like pruning, sparse DNN accelerators can achieve
better results in terms of efficiency.

Redundant Operations: DNNs usually contain several redundant
operations, like multiplications with zero, and correlated inputs in

4
8
2

3
7
1
5

2

6
5

7
2

T=1.5

σ1T = 3.52
σ2T = 2.81

4
8

7

5
6

5

7

4
8
2

3
7
1
5

2

6
5

7
2

50%

4
8

7

5
6

7

4
8
2

3
7
1
5

2

6
5

7
2

50%

8

7

5
6

5

7

CLASS-DISTRIBUTION

CLASS-UNIFORM

CLASS-BLIND

Fig. 2: Different magnitude-based pruning schemes.

streaming applications. Therefore, we do not necessarily need to
process the complete set of inputs at every stage. A challenging task
is finding these redundancies and eliminating them efficiently.

Memory: Significant cycles and energy may be required for
memory data transfer to/from the computational array, which necessi-
tates efficient memory architectures and data organization strategies
for DNNs hardware. Moreover, following the in-memory comput-
ing trends, memristor devices allow to use resistive memories for
analog computation, with additional cost of ADC/DAC overhead.
Is a CMOS-based design with traditional memory hierarchy the
optimal solution for DNN processing, or should we adopt in-memory
computing for deep learning at the edge?

Security: Due to outsourcing of training and data dependencies,
DNNs possess several security vulnerabilities that can be exploited
to perform security attacks, e.g., adversarial examples, backdoors and
data poisoning, for confidence reduction (ambiguity in classification),
random or targeted misclassification and model stealing. These secu-
rity vulnerabilities raise fundamental challenges like model privacy
and secure execution of DNNs, regarding ensuring the robustness
of DNN-based systems. Traditionally, the pre-processing, data en-
cryption and watermarking are used, however, all these defenses can
be neutralized by sophisticated model stealing or black-box attacks.
Therefore, there is a dire need to develop more sophisticated and
efficient defenses to ensure model privacy and secure execution of
the DNNs.

II. CURRENT TRENDS

DNN compression is an attractive solution to reduce the complexity
of a given network. The work of [14] proposed a 3-step method (prun-
ing, quantization and encoding) to significantly reduce the memory
footprint of a given DNN. Network pruning was first used in [10] to
reduce the number of connections. Several different pruning method-
ologies have been explored in the literature Different magnitude-
based pruning methods are shown in Figure 2. Structured pruning
[75] employs constraints on some DNN parameters (e.g., kernel, filter,
channel) to maintain a certain structure. Another approach is to prune
the redundant and least significant weights, regardless of the structure
of the DNN itself [15] [45], and share the weights to reduce the
dimensionality [14]. Other compression methods, based on variational
dropout [44], knowledge transfer [24] and low-rank approximations
[70] are promising as well. On the other hand, techniques which
are focusing on reducing the precision, like quantization [79]

[71], binarization [54] and approximate computing [4] [18] have to
leverage the trade-off between accuracy and efficiency.

Hardware Accelerators: The optimizations at the software level
should be supported by specialized hardware accelerators in a co-
design fashion [47] [19]. Recent advances in the datacenter comput-
ing deep learning [27] have inspired accelerators for edge devices.
Specialized accelerators like [5] [28] exploit the concurrency and the
parallelism available in the processing of the DNNs, especially for
convolutional leyers, while [20] takes care also of the fully-connected
layers. These architectures, however, accelerate dense DNNs, and
cannot exploit the sparsity introduced by pruning. Therefore, spe-
cialized accelerators for sparse DNNs are required [13] [52]. Chal-
lenging aspects of these accelerators are flexibility, reconfigurability
and data reuse [35] [39] [65]. Moreover, particular types of DNNs,
like CapsuleNets [60] and GANs [11] present several differences in
the computation patterns, as compared to traditional DNNs. These
challenges are addressed by their specialized accelerators. For exam-
ple, CapsAcc [46] adopts a data reuse policy to efficiently process the
routing-by-agreement algorithm on a systolyc array-based accelerator
for CapsuleNets, and GANAX [76] propose a unified MIMD-SIMD
design for concurrent execution of GANs.

Optimizations for Object Detection: DNNs have been used
successfully in a variety of tasks such as classification and detec-
tion. Numerous detectors have been proposed by the deep learning
community, including Faster R-CNN [58], R-FCN [7], YOLO [56]
and SSD [40]. These object detectors are separated into two main
categories: 1) Region-based detectors, a two-stage approach, with
a region proposal stage followed by a classifier, and 2) Single-
shot detectors, consist of a single Convolutional Neural Network
(CNN) trained to perform object detection. Region-based detectors
use a region proposal method, such as Selective Search algorithm, to
produce regions-of-interest (RoIs) for object detection. These RoIs
are then warped into fixed size images and feed into a CNN network
one-by-one. This process is time consuming due to the large number
of RoIs that can be extracted (2000) and processed by a single
CNN. Considering a typical 1000×600 image, there will be roughly
20000 potential RoIs per image, where different methods, such as
non-maximum suppression (NMS), is applied on the proposed RoIs
to reduce their count to 2000.

Single-shot detectors such as YOLO [56], have shown significant
potential, especially for resource-constrained applications, compared
to region proposal approaches by trading accuracy with real-time
processing speed. To this end, single-shot detectors avoid the multi-
stage process by processing the whole image at once. The detector
receives an input image, resizes the image based on the CNN input
size and then splits the input image into a grid, where for each grid it
generates bounding boxes and class probabilities based on the number
of objects. Thus, the whole image is processed only once, which
makes this approach faster than the region proposal based approach.

III. CROSS-LAYER OPTIMIZATIONS FOR DEEP LEARNING

SYSTEMS

Combining the current trends for targeting the above-discussed sci-
entific challenges, we propose a methodology to apply optimizations
across different software and hardware layers. The flow of our cross-
layer methodology (shown in Figure 3), can be summarized in the
following key steps:
• Software-Level Optimizations: The software-level optimizations

mainly include network pruning (Step-1 in Fig. 3) and quantization
(Step-2 in Fig. 3) of the parameters. Network pruning is usually
performed iteratively, where, in each iteration, a small number of

Pre-Trained
Neural

Network
Network Pruning

Quantization

Software-level Optimizations

Hardware Accelerator
Design

Efficient
Dataflow

Error-Resilience
Evaluation

Hardware-level
Optimizations

Hardware
Approximations

Compressed Network

Network
Structure

Network
Parameters

Retraining

Retraining

Hardware
Architecture

Stop Sign

Training &
Validation

sets

D
e

si
gn

-T
im

e
R

u
n

-T
im

e Pre-Processing

Image Tiling
& Tile

Selection

Compressed Network

Efficient
Hardware

DNN Inference

Efficient
Dataflow

1

2

3

4

5

6

Fig. 3: Cross-Layer Optimizations for Deep Learning.

parameters are removed and the resultant network is fine-tuned by
retraining for a limited number of epochs. The accuracy of the
network is then analyzed and, on the basis of the accuracy loss,
a decision is made whether to continue the pruning process or to
proceed to the quantization phase. Once the network is pruned,
an effective quantization level is selected for the weights and the
activations of the network. The accuracy loss in the quantization
phase is also compensated by fine-tuning the network parameters.
Note, although here pruning and quantization are listed as two
independent processes, they can be combined in a single loop
where the level of both optimizations (i.e., pruning and quanti-
zation) is selected jointly. One such work, where both pruning and
quantization are enclosed in a single loop, is CLIP-Q [71].

• Hardware-level Optimizations: An efficient hardware architecture
(Step-4 in Fig. 3) can process the compressed network in a highly
energy- and performance-efficient manner. This phase requires a
thorough knowledge of the dataflow and the reuse of different
parameters of the network. Once the hardware architecture has been
finalized, different types of approximations can be applied (Step-5
in Fig. 3) to further improve its energy/power efficiency. The level
and type of approximation are based on the error-resilience of the
compressed network to different types of errors (Step-3 in Fig. 3).
Once the hardware has been designed, a highly efficient dataflow
is decided based on the network characteristics and the hardware
architecture (Step-6 in Fig. 3).

• Run-Time Optimizations: Based on the application, certain opti-
mizations can also be employed at run-time to reduce the number
of samples to be processed. For example, in case of object detection
application [58], a high-resolution image can be divided into
multiple smaller images (known as tiling) and a selection criterion
can be applied to select images with high activity regions. This
process enables us to design DNNs which accept smaller inputs
and thus are more computationally and latency-wise efficient.

By exploiting the above optimizations, we can significantly improve
the efficiency of complex and inherently resource-intensive DNNs.

IV. OPTIMIZATIONS CASE STUDIES

A. Selective Data Processing During Inference

A general trend of DNN design has been to add more layers and
designing deeper models to get better accuracy, without considering
the memory or power budget. Thus, it is challenging in many cases
to use existing DNN models on resource-contrained enviroments
without developing specialized DNN models for edge inference. For

Fig. 4: Selective Search approach proposed in [72].

example, a basic DNN model, such as AlexNet [34], consists of five
convolutional and three fully connected layers, and contains a total of
61 million parameters. Recent approaches propose the design of DNN
models from scratch using different optimizations, such as successive
smaller 3×3 convolutions to approximate the receptive field of 7×7
filters, along with a deeper network [67] leading to a decrease of
the number of parameters. Our previous work [36] shows that by
parameter space exploration in the design of a DNN based on a
specific application, such as an Unmanned Aerial Vehicle (UAV), it
is possible to design an efficient architecture that can perform vehicle
detection up to 40× faster with minimal impact on the accuracy.

There are different pre-processing techniques aiming to increase
the accuracy of a detector while reducing the processing time. For
region based approaches, a brute-froce approach used for object
detection is the sliding windows approach [8] [22] [74]. Using
windows of varied sizes and aspect ratios, to detect different object
types at different viewing distances, a window is slided on the input
image from right to left, and from up to down, to identify objects
using classification. Each windows produced by the previous step, is
warped into a fixed size image and fed into a CNN classifier to extract
a large amount of features. Moreover, an SVM classifier is used to
identify the class and the bounding box of the particular object.

A more sensible way to select regions of the image, is to use a
region proposal method to extract RoIs for object detection. The work
in [72] proposed a selective search algorithm based on hierarchical
grouping, starting with each individual pixel as its own group. For
each group, the texture is calculated. Afterwards, the groups that are
the closest with respect to the texture are combined. First, smaller
groups are grouped together, and the region merging continues until
everything is combined together as shown in Fig. 4 (see details
in [72]). Although these methods have shown remarkable accuracy
results, they often lead to increased execution time and power
consumption, especially when they are deployed on edge devices.

On the other hand, for single shot detectors a pre-processing
technique that has been widely used is resizing the input image
in fed into the DNN. This technique basically is a key step to
reduce the processing time along with the processed data. Most
DNNs are trained on datasets that involve low-resolution images with
considerably large objects with large pixel coverage. The trained
models perform really well on those types of input data, and the
resizing has no impact on the accuracy of the DNN. When these
models are tested on high-resolution images they yield significantly
lower accuracy. In particular, when a high resolution image is resized
there is a significant loss of information, where the pixels representing

Fig. 5: Comparison between predictions using DroNet [36] with STP [53]
(Left) and Resizing (Right).

Tiny-YoloV3 Tiny-YoloV3-Resizing DroNetV3 DroNetV3-Resizing DroNet-STP

96 96

91 91
.9

77

22
.4
7

34

17
.2
9

9.
49

8

5

8

6 5.
5

ACCURACY (%) FPS POWER CONSUMPTION (W)

32
.2
5

Fig. 6: Accuracy, frames-per-second (FPS), and power consumption using
different DNNs with original, resized image and images with STP.

an object are reduced, leading to an accuracy reduction.
To this end, we proposed a Selective Tile Processing (STP) [53]

approach where the input image is separated into smaller regions,
called tiles, in order to avoid resizing the input image and to maintain
the object resolution. Given an input image and the DNN input, the
number of tiles are extracted and are uniformly distributed across the
input image while maintaining a constant overlap between the tiles.
Fig. 5 shows how the tiles are distributed across a high-resolution
image using 512×512 tiles compared to resizing the image to 512×
512 before fed into the DNN. It is clear that the localization of the
object and the accuracy are better using the tiling approach. On the
other hand, there is a notable increase of the number of images that
need to be fed into the DNN for processing. Given the image on Fig.
5, there are 12 tiles extracted compared to the original image, leading
to a 12× increase of the processing time for each frame.

To solve the aforementioned problem, we propose two mechanisms
that utilize statistical information gathered over time in order to select
only a few tiles for processing, while keeping track of the activity
in non-processed tiles. A Memory Mechanism that is able to use
prior information from previous processed frames aiming to store
and load the position of previously detected targets in an efficient
way. Using the Intersection Over Union (IoU) metric, we are able
to categorize each detected bounding box as new or already detected
object. Moreover, with the use of a memory buffer, we are able to
have an estimate of the position of the objects in a frame without
having to again process the specific tile that contains the object.

The second mechanism is an Attention Mechanism, which selects
the tiles that need to be processed by the DNN on the next frame.
Using both memory and attention mechanism, we combine gathered
information from previous frames, such as the number of objects
detected in each tile, to select one or more tiles for processing by
selecting the tiles with the highest weighted score presented in [53].

Fig. 6 shows the impact that resizing and tiling has on the accuracy
of different DNNs trained and evaluated on the same pedestrian
dataset tested on Jetson TX2. Note, by avoiding the resizing step,

Dense CNN
Accuracy Compression

Class-Distribution [15]
Class-Blind v1 [45]
Class-Blind v2 [45]

99.2%
+0.03%
+0.02%
-0.19%

12x
86x

191x

1x

Fig. 7: Comparison of Pruning Methods for the LeNet-5.

and feeding the original image to the DNN, there is an increase in
the accuracy of each detector. On the contrary, the performance in
terms of Frames-per-Second (FPS) is decreased along with the Power
Consumption which makes this method suitable for exploration for
edge devices. Our Selective Tile Processing technique shows that with
minimal impact on the performance of an existing DNN (−3FPS),
there is an increase of 20% of the accuracy and 1.5× decrease of
the power consumption when implemented on an edge device.

B. Software-Level Optimizations at Design Time

For model compression, among the pruning techniques, the
magnitude-based pruning method is the most common one, since
it is effective in terms of memory savings, and at the same time
relatively simple to implement. Iteratively pruning and retraining the
sparse network guarantees to maintain a good level of accuracy, while
significantly reduces the memory footprint. Although this approach
requires more retraining iterations, it is beneficial to reduce the com-
putations of the sparse model at the inference stage, i.e., amenable
to the edge devices. In our previous work in [45], we presented a
class-blind pruning method for achieving significant DNN sparsity.
Figure 7 presents the tradeoff between accuracy and compression
achieved by pruning. The results have been measured, as a case
study using the LeNet-5 on the MNIST dataset. The compression
gains achieved at this stage, however, are not completely refelected
into gains during inference. Indeed, some additional memory for
storing the locations of nonzero weights/parameters in the sparse
matrix must be allocated. Even though a structured pruning scheme
usually requires less overhead than unstructured pruning, sparse
coding schemes like Compressed Sparse Row/Column (CSR, CSC)
[14] have been demonstrated to be effective.

To further reduce the complexity of the network, without accuracy
loss, a fixed-point quantization can be applied. Our previous work
in [19] shows that 12-bit fixed-point is the optimal design choice
for the computations during inference, because the quantized DNN
has the same accuracy as the original one. Further reduction to an
8-bit representation (or even to a lower bit-width) can be obtained,
but it may require re-training to compensate for the accuracy loss
depending upon the application requirements and the type of DNN
used. More aggressive type of quantizations include binary [54] and
ternary [80] quantizations where the weights are represented using
1 and 2 bits, respectively. However, these methods require complex
training algorithms, which can ensure reasonable accuracy even when
the weights have been quantized to 1 or 2-bits.

As an example, Figure 8 shows how to chose Pareto-optimal
points of the design space for Class-Blind pruning and Fixed-Point
quantization, by analyzing the Pareto-frontiers between accuracy and
efficiency. Following this design flow, we obtain a compressed DNN.
Alternatively, another approach is described in the work of [71],
where pruning and quantization are combined in a parallel fashion
before retraining the network.

C. Hardware-Level Optimizations

DNNs require massive computations, which are typically difficult
to deploy at the edge. Most of the computations involved are matrix

Software-Level Optimizations

Pruning Quantization

Optimal Pruning: Class_Blind Optimal Quantization Point

Marchisio et al. [47]
Pre-trained

DNN

Compressed
DNN

Fig. 8: Combining Pruning and Quantization as software-level optimizations.

multiplications, which require multiply-and-accumulate (MAC) units.
A MAC multiplies the weight and the activation, and updates the
partial sum. Depending upon the architecture of the accelerator
and the dataflow mapping strategy (e.g., Weight Stationary, Output
Stationary, Row Stationary 1 [5]), different data reuse scenarios can
be exploited, like weight, input activation, and output activation reuse
[20], for convolutional and fully-connected layers.

A DNN hardware accelerator can further benefit from the network
sparsity, introduced by pruning. For this reason, specialized designs
for handling relative indexing and skipping multiplications in which
one of the terms is equal to zero. The load imbalance problem
can be mitigated by the utilization of queues [13]. The dataflow
(e.g., PlanarTiled-InputStationary-CartesianProduct-sparse [52]) has
to manage the coordinates of all the nonzero weights, input and
output activations. Moreover, the support of different bit-widths can
be handled by having flexible-size processing elements [65].

DNN Inference at the Edge: Accurate or Approximate? DNNs
are considered to be inherently error-resilient [38] and, therefore, can
leverage approximate computing for achieving significant efficiency
gains at the cost of minor accuracy loss, that may be compensated
through re-training. The efficiency gain-per-unit accuracy drop de-
pends on the error-resilience of the DNNs, which also depends on
the type of application and other characteristics of the DNNs [38].
Applications like image classification, which generate only one output
(i.e., class of the image) per input sample are considered to be more
error-resilient as compared to the applications like object detection,
which produce more sophisticated output. Various techniques based
on fault/noise injection have been proposed to evaluate the error-
resilience of the DNNs [55] [18]. These techniques help in quantify-
ing the amount of approximation that can be applied in a DNN.

Approximations can be employed both at the hardware and the
software level. However, here we mainly talk about hardware-level
approximations, because the pruning and the quantization techniques,
perfect examples of software-level optimizations/approximations,
have already been discussed in Section IV-B. Hardware-level approx-
imations include architecture- and circuit-level simplifications. These
types can further be classified into data, and functional approxima-
tions [63], where data approximations refer to approximations in data
storage [61] (i.e., memories) and functional approximations refer to
approximations in the functionality of the processing units [17] [62]
[57].

In memories, aggressive voltage scaling is one of the most
prominent approaches which can lead to significant efficiency gains.
Towards this, Kim et al. [33] proposed MATIC, a memory-adaptive
training approach that enables aggressive voltage scaling of ac-

1Weight Stationary: maximize convolutional reuse and filter reuse, Output
Stationary: maximize partial sum accumulation and input feature map reuse.
Row Stationary: maximize all these parameters.

0
1
2
3
4

72.8
73.2
73.6

74
74.4
74.8

Multiplier 1
Approximate
Multiplier 2

Approximate
Multiplier 3

M
ED

A
cc

u
ra

cy
 [

%
]

Type of Multiplier used in DNN Inference Hardware

MED of a MultiplierClassification Accuracy [%age]

Accurate
Multiplier

Approximate

Fig. 9: Effects of approximations in the multipliers of a DNN inference
hardware on the classification accuracy of the LeNeT network when used
for the CiFAR-10 dataset [16]. MED represents Mean Error Distance of a
multiplier computed using uniform input distribution.

celerator weight memories. Most of the works towards hardware-
level approximation in DNN-based systems have been carried out
in approximating computational modules of the DNN accelerators,
like adders and multipliers. Few of the prominent works include [73]
[78] [49] [50]. To highlight what impact of approximations in the
multipliers used for DNN inference, Fig. 9 shows how the accuracy
of the LeNeT network for the CiFAR-10 dataset decreases when
the approximation level of the multipliers is increased. To cater the
accuracy loss due to approximations, the work in [73] proposed to
incorporate approximations in the forward pass of the training process
to tune the network for the introduced approximations.

All the above-mentioned approaches result in some accuracy loss
and, therefore, can hardly be used in any safety-critical application
because of their stringent accuracy constraints. To address this, we
proposed CANN [16], an approach where curable approximations are
applied in the system such that approximation errors introduced by
one module are completely cured by the subsequent module/s while
ensuring efficiency gains of approximate computing.

In-Memory Computing: The main operations in state-of-the-art
DNNs are vector-matrix and matrix-matrix multiplications, which
are highly data intensive. Therefore, the memory access latency and
access energy can potentially become the critical bottlenecks. In-
memory computing and near-memory computing have emerged as
promising paradigms for addressing such bottlenecks. Several archi-
tectures have been proposed which make use of ReRAM crossbars
for realizing in-memory computing, i.e., performing computations
where the data is stored. PRIME [6] reported around 895x efficiency
gains in the overall energy consumption of the accelerator compared
to the then state-of-the-art. PIPELAYER [68] proposed a hardware
architecture for improving the overall throughput of ReRAM crossbar
based accelerators. However, there are some practical issues associ-
ated with ReRAM crossbars when used for computations which limit
the offline trained networks to perform as expected on such these
accelerators. To address these issues, recently, a device variability-
aware training methodology has also been proposed in [42], which
trains a network while adding stochastic noise in the parameters of the
network. The noise is modeled based on the variation-characteristics
of the hardware and, therefore, helps in maintaining high accuracy
even when there are significant variations in the network parameters
because of the device variations.

V. MACHINE LEARNING SECURITY

Recently, security for machine learning, especially in DNNs, has
become one of the prime challenges to ensure robustness of DNN-
based systems. This is because these systems are highly vulnerable to
data poisoning, model stealing and adversarial example [64] [21]. In
this section, we present a brief overview of the recent advancements
in security attacks and corresponding defenses for DNNs (Fig. 10).

TrainingBackdoor

Trained DNN Model

Data Poisoning

Neural Trojans

DNN Defenses
(e.g., QuSecNets [30],

FAdeML [31],
Quantization

Noise Filtering

Sobel Filtering

Training Dataset
DNN Model Structure

Validation

Hardware
Implementation

Validation Dataset

DNN Inferencing

White-box Attacks

e.g., FGSM, JSMA, TrISec
[29], etc.

Black-box Attacks

Score-based, Gradient-
based, Decision-based [32]

R
ea

l-
ti

m
e

D
at

as
et

TriSec Attack [29]

Defended DNN
Model

Validation

FAdeML [31]

DNN Structure
and parameters

Target Image

Perceptibility (CR & SSI) vs
Noise Analysis

Ranges for perceptibility
(CR & SSI)

Perceptibility
Analysis

Back-propagation algorithm to
generate attack noise

A
tt

ac
k

Im
ag

e
D

ef
en

d
ed

 D
N

N

QuSecNets [30]

Tr
ai

n
ed

 M
o

d
el

 o
f

D
N

N

Noise vs
accuracy
analysis

Quantization
parameters

selection

Integrate quantization

Noise filtering
accuracy analysis

Integrate noise
filters with DNN

Adversarial
Examples

Adversarial
Examples

DNN
Parameters

Inference
Output

(b)(a)

Fig. 10: (a) An overview of the different security attacks and corresponding defense strategies for machine learning, especially DNNs. (b) An example of our
training dataset-unaware imperceptible attack (e.g., TrISec [29]) and pre-processing based defense strategies (e.g., QuSecNets [30], FAdeML [31]).

A. Security Attacks:

Security vulnerabilities in DNNs can be exploited at different
development phases of DNN-based systems, i.e., training, hardware
implementation and inferencing. During the DNN training, attacker
either can exploit the training dataset by introducing small patterned
noise, adding specially crafted backdoors [12], or modifying the DNN
structure and parameters (i.e., neural Trojans [41]), to train the DNNs
for particular noise patterns or backdoor triggers. In these kind of
attacks, the attacker either requires complete access to the training
dataset or DNN structure. In most of the cases, the specially crafted
attack noise is perceptible and may or may not have the hidden
backdoor triggers. Therefore, these attacks can be detected during
the DNN inference using subjective and objective analysis [29].

On the other hand, attacks during the DNN inferencing do not
depend on the whole training datasets but may require some samples
from training dataset. In these attack, attacker can exploit both black-
box2 and white-box3 settings to generate adversarial examples for
misclassification or confidence reduction [51]. The attack noise gen-
erated from such attacks may or may not be imperceptible depending
upon their attack algorithm. Based on the attack algorithm and
optimization to ensure imperceptibility, several adversarial attacks
have been proposed [77], e.g., the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS), the Fast Gradient Sign Method (FGSM),
and the Jacobian-based Saliency Map Attack (JSMA), etc. However,
these attacks do not consider the subjective and objective analysis for
ensuring the imperceptibility.

To address these limitation, recently, training data-unaware imper-
ceptible, TrISec, attack was proposed [29]. This attack leverages the
back-propagation algorithm to perform the targeted misclassifcation
and incorporates the subjective and objective analysis, i.e., correlation
coefficient and structural similarity, into its attack algorithm to
ensure the imperceptibility under the white-box settings. Note, all
the attacks during the inferencing under the white-box setting can
be used in black-box setting by combining them with model stealing
attacks [30]. Similarly, several attacks under black-box setting have
been proposed, e.g., decision-based [32] and score-based attacks,
that either use the search algorithm or perform statistical analysis
to estimate the behavior of the DNNs.

B. Defenses:

Several security defense strategies have been proposed based on the
different threat models and the development phases of DNN-based
systems. Backdoor and training data poisoning attacks can be neutral-
ized by using pruning [12] or retraining the DNN on a subset of the

2Black-Box Attack: the attacker does not has any access to the trained DNN
structure or the output probabilities

3White-Box Attack: the attacker has access to the DNN structure which an
attacker can exploit but cannot modify.

dataset. These defense strategies can be countered by using pruning or
weight sensitivity analysis before adding the neural Trojans or before
training it for backdoors [12]. Several defense strategies have been
proposed to counter the adversarial attacks [77], e.g., DNN masking,
gradient masking, adversarial learning, generative adversarial network
based defense, data augmentation, and pre-process the input data
(e.g., noise filtering [31], quantization [30]) to detect remove or make
the adversarial noise perceptible. For example, recently, it has been
studied that even low pass noise filtering at the input of the DNN
can neutralize the adversarial examples if the attacker is unaware
of it [31]. Note, all of these defense strategies can be countered by
decision-based attacks which can estimate the DNN behavior even in
masked DNNs under the black-box settings [1]–[3], [32].

VI. OPEN RESEARCH CHALLENGES

In the following, we list some key research challenges which can
potentially have a huge impact for improving the efficiency of deep
learning for edge computing.

• Hardware Software Co-Design: A common trend is to optimize
the DNN for achieving high accuracy, without caring much about
the underlying hardware complexity and energy consumption of a
computing device. On the other hand, hardware designers have to
implement a-posteriori architectures to exploit the software-level
optimizations. However, hardware-aware software-level optimiza-
tions, e.g., for DNN architecture exploration [69] or compression
[43] are promising and need further efforts to succeed.

• In-Memory Computing: It seems to be a promising paradigm
for developing accelerators that can offer orders of magnitude of
energy-efficiency gains compared to the conventional CPU and
GPU based systems. However, the high variation characteristics
associated with ReRAM and other non-volatile memories limit the
accelerators which are based on them to offer precise functionality.
Towards this, the multi-level cell (MLC) ReRAM technology has
to be mature enough to offer reasonable precision while offering
high data density. Also, a significant amount of work is required
to develop methods which can be used to train networks such that
they can offer high accuracy even when operated on NVM-based
in-memory computing devices.

• Hardware-Aware Hyperparameter Tuning and DNN Architec-
tural Exploration: Several software-level optimization techniques
have been proposed which highlight that sparse DNNs, i.e., having
lesser number of parameters, can also offer nearly the same level
of output accuracy as dense DNNs. Systematic methodologies are
required which, while being aware of the underlying hardware
architecture and the system, can tune the network such that it offers
near-optimal energy and performance efficiency while maintaining
the baseline accuracy.

• Event-based Spiking Neural Networks: They have the potential
to be much more energy-efficient, as compared to digital-based
DNNs, because the power is only consumed when a spike is firing.
Such event-driven processing are promising. Therefore, companies
like IBM and Intel are investing into their respective neuromorphic
architecture chips and its accelerators [48] [9].

REFERENCES

[1] A. Athalye et al. Obfuscated gradients give a false sense of security: Circumventing
defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

[2] A. Athalye et al. On the robustness of the CVPR 2018 white-box adversarial
example defenses. arXiv preprint arXiv:1804.03286, 2018.

[3] W. Brendel et al. Decision-based adversarial attacks: Reliable attacks against black-
box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

[4] C. Chen et al. Exploiting approximate computing for deep learning acceleration.
In DATE, 2018.

[5] Y. H. Chen et al. Eyeriss: A spatial architecture for energy efficient dataflow for
convolutional neural networks. In ISCA, 2016.

[6] P. Chi et al. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. ACM SIGARCH Computer Architecture
News, 2016.

[7] J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional
Networks. In NIPS, 2016.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, 2005.

[9] M. Davies et al. Loihi: A neuromorphic manycore processor with on-chip learning.
In IEEE Micro, 2018.

[10] X. Dong et al. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. arXiv preprint arXiv:1705.07565, 2017.

[11] I. J. Goodfellow et al. Generative adversarial nets. In NIPS, 2014.
[12] T. Gu et al. BadNets: Evaluating Backdooring Attacks on Deep Neural Networks.

In IEEE Access, 2019.
[13] S. Han et al. EIE: Efcient Inference Engine on Compressed Deep Neural Network.

In ISCA, 2016.
[14] S. Han et al. Deep compression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In ICLR, 2016.
[15] S. Han et al. Learning both weights and connections for efficient neural network.

In NIPS, 2015.
[16] M. A. Hanif et al. CANN: Curable Approximations for High-Performance Deep

Neural Network Accelerators. In DAC, 2019.
[17] M. A. Hanif et al. QuAd: Design and analysis of quality-area optimal low-latency

approximate adders. In DAC, 2017.
[18] M. A. Hanif et al. Error resilience analysis for systematically employing approxi-

mate computing in convolutional neural networks. In DATE, 2018.
[19] M. A. Hanif et al. X-DNNs: Systematic Cross-Layer Approximations for Energy-

Efficient Deep Neural Networks. In Journal of Low Power Electronics, 2018.
[20] M. A. Hanif et al. MPNA: A Massively-Parallel Neural Array Accelerator

with Dataflow Optimization for Convolutional Neural Networks. arXiv preprint
arXiv:1810.12910, 2018.

[21] M. A. Hanif et al. Robust machine learning systems: Reliability and security for
deep neural networks. In IOLTS 2019.

[22] H. Harzallah et al. Combining efficient object localization and image classification.
In ICCV, 2009.

[23] K. He et al. Deep residual learning for image recognition. In CoRR, vol.
abs/1512.03385, 2015.

[24] G. E. Hinton et al. Distilling the knowledge in a neural network. In NIPS, 2015.
[25] A. G. Howard et al. Mobilenets: Efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861, 2017.
[26] F. N. Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and <0.5MB model size. arXiv preprint arXiv:1602.07360, 2016.
[27] Z. Jia et al. Dissecting the NVIDIA Volta GPU Architecture via Microbenchmark-

ing. arXiv preprint arXiv:1804.06826, 2018.
[28] N. P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit.

In ISCA, 2017.
[29] F. Khalid et al. TrISec: training data-unaware imperceptible security attacks on

deep neural networks. In IOLTS, 2019.
[30] F. Khalid et al. QuSecNets: Quantization-based Defense Mechanism for Securing

Deep Neural Network against Adversarial Attacks. In IOLTS, 2019.
[31] F. Khalid et al. FAdeML: understanding the impact of pre-processing noise filtering

on adversarial machine learning. In DATE 2019.
[32] F. Khalid et al. RED-Attack: Resource efficient decision based attack for machine

learning. arXiv preprint arXiv:1901.10258, 2019.
[33] S. Kim et al. MATIC: Learning around errors for efficient low-voltage neural

network accelerators. In DATE, 2018.
[34] A. Krizhevsky et al. Imagenet classification with deep convolutional neural

networks. In NIPS, 2012.
[35] H. Kwon et al. MAERI: Enabling Flexible Dataflow Mapping over DNN Accel-

erators via Reconfigurable Interconnects. In ASPLOS, 2018.
[36] C. Kyrkou et al. Dronet: Efficient convolutional neural network detector for real-

time UAV applications. In DATE, 2018.

[37] C. H. Lampert et al. Efficient subwindow search: A branch and bound framework
for object localization. In TPAMI, 2009.

[38] G. Li et al. Understanding error propagation in deep learning neural network
(DNN) accelerators and applications. In HPCA, 2017.

[39] J. Li et al. SmartShuttle: Optimizing off-chip memory accesses for deep learning
accelerators. In DATE, 2018.

[40] W. Liu et al. SSD: Single Shot MultiBox Detector. In ECCV, 2016.
[41] Y. Liu et al. Neural trojans. In IEEE ICCD, 2017.
[42] Y. Long et al. Design of Reliable DNN Accelerator with Un-reliable ReRAM. In

DATE, 2019.
[43] Q. Lou et al. AutoQB: AutoML for Network Quantization and Binarization on

Mobile Devices. arXiv preprint arXiv:1902.05690v1, 2019.
[44] C. Louizos et al. Bayesian compression for deep learning. In NIPS, 2017.
[45] A. Marchisio et al. PruNet: Class-Blind Pruning Method For Deep Neural Net-

works. In IJCNN, 2018.
[46] A. Marchisio et al. CapsAcc: An Efficient Hardware Accelerator for CapsuleNets

with Data Reuse. In DATE, 2019.
[47] A. Marchisio et al. HW/SW co-design and co-optimizations for deep learning. In

INTESA@ESWEEK, 2018.
[48] P. A. Merolla et al. A million spikingneuron integrated circuit with a scalable

communication network and interface. in Science, 2014.
[49] V. Mrazek et al. Design of power-efficient approximate multipliers for approximate

artificial neural networks. In ICCAD, 2016.
[50] V. Mrazek et al. AutoAx: An Automatic Design Space Exploration and Circuit

Building Methodology utilizing Libraries of Approximate Components. In DAC,
2019.

[51] N. Papernot et al. Practical black-box attacks against machine learning. In ACM
CCS, 2017.

[52] A. Parashar et al. SCNN: An accelerator for compressed-sparse convolutional
neural networks. In ISCA, 2017.

[53] G. Plastiras et al. Efficient ConvNet-based object detection for unmanned aerial
vehicles by selective tile processing. In ICDSC, 2018.

[54] M. Rastegari et al. Xnor-net: Imagenet classification using binary convolutional
neural networks. In ECCV, 2016.

[55] B. Reagen et al. Ares: A framework for quantifying the resilience of deep neural
networks. In DAC, 2018.

[56] Y. Redmon et al. You Only LookOnce: Unified, Real-Time Object Detection. In
CVPR, 2016.

[57] S. Rehman et al. Architectural-space exploration of approximate multipliers. In
ICCAD, 2016.

[58] S. Ren et al. Faster R-CNN: towards real-time object detection with region proposal
networks. In CoRR, vol. abs/1506.01497, 2015.

[59] O. Russakovsky et al. Imagenet large scale visual recognition challenge. In
International Journal of Computer Vision, 2015.

[60] S. Sabour et al. Dynamic routing between capsules. In NIPS, 2017.
[61] F. Sampaio et al. Approximation-aware multi-level cells STT-RAM cache archi-

tecture. In CASES, 2015.
[62] M. Shafique et al. A low latency generic accuracy configurable adder. In DAC,

2015.
[63] M. Shafique et al. Cross-layer approximate computing: From logic to architectures.

In DAC, 2016.
[64] M. Shafique et al. An overview of next-generation architectures for machine

learning: Roadmap, opportunities and challenges in the IoT era. In DATE, 2018.
[65] H. Sharma et al. Bit Fusion: Bit-level Dynamically Composable Architecture for

Accelerating Deep Neural Network. In ISCA, 2018
[66] E. Shelhamer et al. Fully convolutional networks for semantic segmentation. In

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
[67] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In CoRR, vol. abs/1409.1556, 2014.
[68] L. Song et al. Pipelayer: A pipelined reram-based accelerator for deep learning.

In HPCA, 2017.
[69] D. Stamoulis et al. HyperPower: Power-and memory-constrained hyper-parameter

optimization for neural networks. In DATE, 2018.
[70] C. Tai et al. Convolutional neural networks with low-rank regularization. vol.

abs/1511.06067, 2015.
[71] F. Tung and G. Mori. Clip-q: Deep network compression learning by inparallel

pruning-quantization. In CVPR, 2018.
[72] J. R. Uijlings et al. Selective Search for Object Recognition. In IJCV, 2014.
[73] S. Venkataramani et al. AxNN: energy-efficient neuromorphic systems using

approximate computing. In ISLPED, 2014.
[74] P. Viola and M. J. Jones. Robust real-time face detection. In IJCV, 2004.
[75] W. Wen et al. Learning structured sparsity in deep neural networks. In NIPS, 2016.
[76] A. Yazdanbakhsh et al. GANAX: A Unified SIMD-MIMD Acceleration for

Generative Adversarial Network. In ISCA, 2018.
[77] X. Yuan et al. Adversarial examples: Attacks and defenses for deep learning. In

IEEE Transactions on neural networks and learning systems, 2019.
[78] Q. Zhang et al. ApproxANN: An approximate computing framework for artificial

neural network. In DATE, 2015.
[79] A. Zhou et al. Incremental Network Quantization: Towards Lossless CNNs with

Low-precision Weights. In ICLR, 2017.
[80] C. Zhu et al. Trained ternary quantization. In ICLR, 2017.

