Journal article Open Access

Equations of Motion in the Theory of Relativistic Vector Fields

Fedosin, Sergey G.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3533672</identifier>
  <creators>
    <creator>
      <creatorName>Fedosin, Sergey G.</creatorName>
      <givenName>Sergey G.</givenName>
      <familyName>Fedosin</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3627-2369</nameIdentifier>
    </creator>
  </creators>
  <titles>
    <title>Equations of Motion in the Theory of Relativistic Vector Fields</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-08-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3533672</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.18052/www.scipress.com/ilcpa.83.12</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Within the framework of the theory of relativistic vector fields, the covariant expressions are presented for the equations of motion of the matter and the field. These expressions can be written either in terms of the field tensors, that is, the fields' strengths and solenoidal vectors, or in terms the four-potentials, that is, the fields' scalar and vector potentials. This state of things is due to the fact that the Lagrange function initially implied the complementarity of description in terms of the strengths and the field potentials. It is shown that the equation for the fields, obtained by taking the covariant derivative in the equation for the metric, has a deeper meaning than the ordinary equation of motion of the matter, found with the help of the principle of least action. In particular, the above-mentioned equation for the fields leads to the generalized Poynting theorem, and after integration over the volume it allows us to introduce for consideration the integral vector as a measure of the energy and the fields' energy fluxes, associated with a system of particles and fields.</description>
  </descriptions>
</resource>
0
0
views
downloads
Views 0
Downloads 0
Data volume 0 Bytes
Unique views 0
Unique downloads 0

Share

Cite as