Journal article Open Access

Emerging rare-earth doped material platforms for quantum nanophotonics

Zhong, Tian; Goldner, Philippe


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3533165</identifier>
  <creators>
    <creator>
      <creatorName>Zhong, Tian</creatorName>
      <givenName>Tian</givenName>
      <familyName>Zhong</familyName>
      <affiliation>Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA,</affiliation>
    </creator>
    <creator>
      <creatorName>Goldner, Philippe</creatorName>
      <givenName>Philippe</givenName>
      <familyName>Goldner</familyName>
      <affiliation>Institut de Recherche de Chimie Paris, PSL University, Chimie ParisTech, CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Emerging rare-earth doped material platforms for quantum nanophotonics</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>nanoqtech</subject>
    <subject>rare earth</subject>
    <subject>quantum technologies</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-09-27</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3533165</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1515/nanoph-2019-0185</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Rare-earth dopants are arguably one of the most studied optical centers in solids, with applications spanning from laser optoelectronics, biosensing, lighting to displays. Nevertheless, harnessing rare-earth dopants&amp;rsquo; extraordinary coherence properties for quantum information technologies is a relatively new endeavor, and has been rapidly advancing in recent years. Leveraging the state-of-the-art photonic technologies, on-chip rare-earth quantum devices functioning as quantum memories, single photon sources and transducers have emerged, often with potential performances unrivaled by other solid-state quantum technologies. These existing quantum devices, however, nearly exclusively rely on macroscopic bulk materials as substrates, which may limit future scalability and functionalities of such quantum systems. Thus, the development of new platforms beyond single crystal bulk materials has become an interesting approach. In this review article, we summarize the latest progress towards nanoscale, low-dimensional rare-earth doped materials for enabling next generation rare-earth quantum devices. Different platforms with a variety of synthesis methods are surveyed. Their key metrics measured to date are presented and compared. Special attention is placed on the connection between the topology of each platform to its target device applications. Lastly, an outlook for near term prospects of these platforms are given, with a hope to spur broader interests in rare-earth doped materials as a promising candidate for quantum information technologies.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber>
      <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
60
113
views
downloads
Views 60
Downloads 113
Data volume 71.0 MB
Unique views 55
Unique downloads 110

Share

Cite as