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Abstract: High-fidelity qubit initialization is of significance for efficient error correction
in fault tolerant quantum algorithms. Combining two best worlds, speed and robustness, to
achieve high-fidelity state preparation and manipulation is challenging in quantum systems, where
qubits are closely spaced in frequency. Motivated by the concept of shortcut to adiabaticity,
we theoretically propose the shortcut pulses via inverse engineering and further optimize the
pulses with respect to systematic errors in frequency detuning and Rabi frequency. Such protocol,
relevant to frequency selectivity, is applied to rare-earth ions qubit system, where the excitation
of frequency-neighboring qubits should be prevented as well. Furthermore, comparison with
adiabatic complex hyperbolic secant pulses shows that these dedicated initialization pulses can
reduce the time that ions spend in the excited state by a factor of 6, which is important in coherence
time limited systems to approach an error rate manageable by quantum error correction. The
approach may also be applicable to superconducting qubits, and any other systems where qubits
are addressed in frequency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fast and high-fidelity manipulation of qubit states is one of the primary requirements for fault
tolerant quantum information processing and quantum computing. Actually realizing high-fidelity
on arbitrary states are in the best cases limited by fundamental quantities such as coherence time or
available bandwidth due to level separations in atomic systems. At the same time, in a fully fault
tolerant quantum algorithm, the large majority of the qubits are used by the error correction [1],
where these ancilla qubits have to be read out and re-initialized on the fly repeatedly during the
sequence. For initialization operations, the input state is not arbitrary but well known, based on
the knowledge of the initial state, shortcut to adiabatic pulses can be used to create faster and
more robust initialization pulses. High-fidelity initialization on qubits that are closely spaced
in frequency generally requires: (i) a short operation time compared to decoherence time, (ii)
robustness against imperfections in the system, for example, frequency variations, frequency
detunings, and Rabi frequency fluctuations, (iii) reasonably low off-resonant excitations of
frequency-neighboring qubits, which is a practical obstacle for high-fidelity manipulation on such
qubits. For example, the frequency variation when making superconducting transmon qubits is
typically >2%. Further, when coupling several transmon qubits, two-qubit operation frequencies

                                                                                               Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8267 

#352902 https://doi.org/10.1364/OE.27.008267 
Journal © 2019 Received 28 Nov 2018; revised 9 Feb 2019; accepted 11 Feb 2019; published 7 Mar 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.008267&amp;domain=pdf&amp;date_stamp=2019-03-07


will be relatively close in frequency compared to the typical Rabi frequencies of 20-100 MHz,
putting large demands on the frequency selectivity of the gate operations [2,3]. Another example
is the ensemble rare-earth ions (REI) system, where the qubit is represented by an ensemble of
ions with hundreds-kHz inhomogeneous broadening and different qubits are closely spaced in
frequency [4, 5]. The requirements on low off-resonant excitation originates from the fact that
qubits at neighboring frequency channels could be excited off-resonantly by the pulses targeting
the qubit ions, and disturb the qubit operation resulting in a reduction of operational fidelity.
Combining speed and robustness is challenging, as some pulses are good at one aspect but

not the other. For example, hard resonant pulses are fast but highly sensitive to frequency
detunings and fluctuations in light intensity; adiabatic-passage pulses (both rapid and stimulated
adiabatic passage) are robust against variations but relatively slow [6–8]; composite pulses
are robust benefitting from the cancellation of errors by a small number of carefully-designed,
consecutively-implemented rotations, but involve multiple pulses so the operation time might
be long [9, 10]. Protocols that can be used to generate pulses which are good at both aspects
are optimal control theory and shortcut to adiabaticity (STA). Optimal control theory can be
used to optimize one or more physical quantities to achieve pulses that enable fast operation
and are immune to experimental errors [11–14]. Smooth optimal control has been employed in
nitrogen-vacancy centers in diamond to achieve robustness with respect to variation in the control
field and frequency detuning from inhomogeneous broadening [15]. A robust NOT gate has been
proposed where a hybrid protocol involving both inverse engineering in STA and optimal control
was used [16]. STA intends to speed up the adiabatic process via nonadiabatic dynamics while
retaining the robustness achieved by the adiabatic process [17,18], for this several techniques have
been developed, including inverse engineering based on Lewis-Riesenfeld (LR) invariants [18,19],
counter-diabatic driving (or transitionless driving) [20, 21], and fast-forward technique [22]. In
the inverse engineering technique based on LR invariants, the desired target state is guaranteed by
the boundary constraints on the instantaneous qubit state, which is the eigenstate of the invariant
and analytically known. The freedom left provides the flexibility to optimize the parameters of
pulse with respect to the imperfections in the system under consideration [23, 24]. Nevertheless,
counter-diabatic driving can steer the qubit state nonadiabatically along the adiabatic path by
adding an additional term to the system Hamiltonian. The physical implementation of this term
could be a microwave between two qubit levels or modifications on the light pulses through
unitary transformations [25–29]. These two techniques are mathematically equivalent [19] but
are different in terms of physical implementation [30]. So for a specific system one might be
more applicable than the other depending on the physical constraints and limitations.
In this work, we theorectically propose a protocol for designing pulses that can manipulate

qubits closely spaced in frequency in a three-level system between two arbitrary (but known)
states with a high fidelity. A combination of the inverse engineering technique and optimization
of pulse parameters is used to develop nonadiabatic two-color resonant STA pulse, which are fast
in time, and robust against detuning in frequencies and fluctuations in Rabi frequencies. The
protocol is applied in simulation to REI system, which is a competitive approach for quantum
computing and quantum memories due to their excellent optical and spin coherent properties.
The rare-earth quantum computing scheme is also supported in the fundamental science part
of the European quantum technologies flagship program that was initiated in 2018 [31]. The
qubit coherence time can be as long as 6 hours [32], and the optical coherence time can be
several milliseconds [33]. In this approach REIs are doped into a crystal, which acts as a natural
trap, trapping the ions with sub-nm separation. The high qubit density offers ideal potential
for scaling, and several promising schemes towards scalable quantum computers have been
suggested [4,13,34]. Using the inverse engineering technique, robust nonadiabatic pulses are
developed for the REI system, which can reduce the qubit initialization time from the previous
value of 17.6 µs using the adiabatic complex hyperbolic secant (CHS) pulses to 4 µs with realistic
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Rabi frequencies [5, 35]. Most importantly, the time that the ions spend in the excited state
with our pulses is only 0.7 µs, which is reduced by a factor of 6 compared to the previous
value in the same system. This would give a corresponding factor of 6 reduction in the fidelity
error in coherence time (T2) limited systems. The combination of inverse engineering with
optimization of pulse parameters may be used to tailor the performance of light-matter interaction
in other frequency addressing systems such as superconducting qubits, and may also be used for
optimizing the bandpass feature around a center frequency in waveguides [36, 37].
The article is organized as follows. In Section 2 the Hamiltonian of a three-level system and

its LR invariant are described. Design of the pulses utilizing the inverse engineering technique,
as well as the performance of the pulses are presented in Section 3, where application examples
of the protocol for other operation tasks are also provided. Discussions and conclusion on the
protocol is made in Section 4. Optimization method of the pulse parameters and a summary of
all pulses presented in this work can be found in Appendix A and B, respectively.

2. Hamiltonian and Lewis-Riesenfeld invariant

In a laser adapted interaction picture and within the rotating wave approximation, we write the
Hamiltonian of a three-level system, as shown in Fig. 1, in stimulated Raman adiabatic passage
for a “one-photon resonance” case in bases of |1〉, |e〉, and |0〉 as [18, 38]

H(t) =
~

2


0 Ωp(t) 0

Ωp(t) 0 Ωs(t)e−iϕ

0 Ωs(t)eiϕ 0


. (1)

Ωi (i = p, s) is the Rabi frequency and represents the coupling between the laser light and the
optical transitions. ϕ is a time-independent phase of the field Ωs, and serves the purpose of
achieving a phase relationship between |0〉 and |1〉 depending on the target state.

 

|e⟩ 

|0⟩ 

|1⟩ 

Ωp Ωs𝐞𝐢𝛗 

在此处键入公式。 

Fig. 1. Schematic energy levels of a three-level lambda system. The qubit is represented
by two long-lived ground state levels |0〉 and |1〉, where |1〉 is initially populated. Qubit
levels are coupled through optical transitions |0〉 − |e〉 and |1〉 − |e〉, which possibly exhibits
an inhomogeneous broadening. Ωp and Ωs denote the respective Rabi frequencies. ϕ is a
time-independent phase factor of Ωs.

In the following we employ the LR invariant theory to find the solution of the Schrödinger
equation [39]

i~∂t |ψ(t)〉 = H(t) |ψ(t)〉 . (2)
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The LR invariant I(t) of H(t), which satisfies dI/dt ≡ ∂I/∂t + (1/i~)[I(t),H(t)] = 0, can be
constructed as [19, 40]

I(t) =
~Ω0

2


0 cos γ sin β −i sin γe−iϕ

cos γ sin β 0 cos γ cos βe−iϕ

i sin γeiϕ cos γ cos βeiϕ 0


, (3)

where Ω0 is an arbitrary constant in unit of frequency. γ and β are time-dependent variables to
be designed, and relate to the Rabi frequencies as:

Ωp(t) = 2[ Ûβ cot γ(t) sin β(t) + Ûγ cos β(t)], (4)

Ωs(t) = 2[ Ûβ cot γ(t) cos β(t) − Ûγ sin β(t)]. (5)

In these equations Ûβ and Ûγ denote the time derivative of β and γ, respectively. The eigenstates of
the invariant I(t) are

|φ0(t)〉 =


cos γ(t) cos β(t)

−i sin γ(t)

− cos γ(t) sin β(t)eiϕ


(6)

and

|φ±(t)〉 =
1
√

2


sin γ(t) cos β(t) ± i sin β(t)

i cos γ(t)

[− sin γ(t) sin β(t) ± i cos β(t)]eiϕ


, (7)

with eigenvalues λ0 = 0, and λ± = ±~Ω0/2, respectively.
LR theory tells that any linear summation

|ψ(t)〉 =
∑
n=0,±

Cneiαn |φn(t)〉 , (8)

where Cn is a time-independent amplitude determined by boundary conditions and

αn(t) =
1
~

∫ t

0

〈
φn(t ′)|i~

∂

∂t ′
− H(t ′)|φn(t ′)

〉
dt ′,

is the LR phase, is a solution of Eq. (2). From Eqs. (1) and (6) one can prove that α0 = 0, which
means that |φ0(t)〉 is a solution to Eq. (2) as well.

In this work, we focus on the case where H(t) in Eq. (1) drives the 3-level system from an initial
state, for example |1〉, to an arbitrary superposition target state

��ψtg
〉
= cos θa |1〉 + sin θaeiϕa |0〉

(θa and ϕa are arbitrary phase angles) or vice versa, along the invariant eigenstate |φ0(t)〉.

3. Inverse engineering and results

Boundary states |φ0(0)〉 = |1〉 and |φ0(tf)〉 =
��ψtg

〉
(tf refers to the ending time of the laser pulse)

impose restrictions on the boundary values of γ(t) and β(t). In the simplest form but without
loss of generality, one may choose

γ(0) = 0, γ(tf) = π

β(0) = 0, β(tf) = π − θa,
(9)
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and ϕ = ϕa.
Bearing these boundary values in Eq. (9) in mind, and also considering the requirements on

both the robustness and off-resonant excitations as described in the Introduction, we make an
ansatz on γ(t), which fulfills Eq. (9) and reads

γ(t) =
π

tf
t +

n=∞∑
n=1

an sin
(

nπ
tf

t
)
, (10)

where an is the coefficient of each sinusoidal component, which will be discussed shortly.
We further let Ûβ(t) ∝ sin(γ) to fix the divergence of Ωp,s at t = 0 and t = tf in Eqs. (4) and (5).

The ansatz on β(t), which satisfies Eq. (9), reads

β(t) =
π − θa

2
[1 − cos γ(t)]. (11)

With Eqs. (10) and (11), Rabi frequencies in Eqs. (4) and (5) are simplified as:

Ωp = Ûγ(t)[(π − θa) cos γ(t) sin β(t) + 2 cos β(t)], (12)

Ωs = Ûγ(t)[(π − θa) cos γ(t) cos β(t) − 2 sin β(t)]. (13)

The ansatzs shown in Eqs. (10) and (11) ensure that H(t) drives the system from |1〉 to
��ψtg

〉
.

However, from an experimental point of view Ωp,s is preferred to start and end at zero, that is

Ωp,s(0) = Ωp,s(tf) = 0, (14)

equivalently
Ûγ(0) = Ûγ(tf) = 0, (15)

so as to avoid sharp changes in electric field at t = 0 and t = tf . This is because sharp changes in
time domain would result in multiple frequency components in frequency domain, which could
cause unwanted excitations. Eq. (15) requires

a1 + 3a3 + 5a5 + 7a7 + 9a9 + ... + (2k − 1) · a2k−1 = 0 (16)

and
a2 + 2a4 + 3a6 + 4a8 + ... + k · a2k = −0.5, (17)

where k is an integer number. In principle, k can be infinitely large, but in practice it will
be limited by the rise time of the device which is used for generating the pulses, e.g. an
acousto-optical modulator. In this work, k = 4 is considered.
Irrespective of the values of an as long as they satisfy Eqs. (16) and (17), pulses constructed

from γ(t) and β(t) from Eqs. (10) and (11) are able to drive the qubit from |1〉 to
��ψtg

〉
. However,

the fidelity might not be robust. The 6 degrees of freedom available in Eqs. (16) and (17) can be
used to tailor the pulses for achieving the required robustness. For simplicity, in this work we
consider the case where a1,3,5,7 = 0, and a2,6,8 are to be optimized. The optimization is done
by manually optimizing the parameters one at a time. Details can be found in Appendix A.
While even better results could be expected by using all 6 degrees of freedom, the present more
restricted choice still clearly demonstrates the strength of the approach.

Below we apply the pulse-designing protocol discussed above to an ensemble REI qubit system
to develope fast and robust initialization pulses. In this system, the qubit is represented by two
hyperfine ground states of an ensemble of REIs randomly doped into an Y2SiO5 crystal, for
example, Pr3+:Y2SiO5 or Eu3+:Y2SiO5 . Experimental arbitrary gates have been demonstrated in
the Pr system [5], making it a useful choice for comparing our results with. The relevant energy
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structure is shown in Fig. 2(a). The qubit operations between |0〉 and |1〉 are implemented via
the respective optical transitions |0〉 − |e〉 and |1〉 − |e〉 at a wavelength of 605.977 nm with
an optical coherence time of about 152 µs (in a magnetic field of 77 G) [41]. The qubit ions
can be spectrally isolated in a zero-absorption frequency range of 18 MHz (called a spectral pit
hereafter) and have an inhomogenous full width at half maximum (FWHM) frequency span of
170 kHz [5]. A schematic of the absorption spectrum of a qubit in a pit is shown in Fig. 2(b),
where both |0〉 and |1〉 are populated, and zero frequency is defined as the transition frequency
from |0〉 to the first level of the excited states. Population of |0〉 (|1〉) state is represented by peaks
1-3 (peaks 4-5) in the absorption spectrum separated by the upper state splitting, 4.6 MHz and
4.8 MHz, where the different peak heights originate from different transition oscillator strengths.
The distance from peak 2 or peak 5 to the edge of the spectral pit is about 3.9 MHz. Here 3.5
MHz can be considered leaving a margin of 0.4 MHz accounting for the width of the peak. High
fidelity qubit manipulation in such a system requires that the action on the system by the pulses
to be flat within a frequency detuning range of at least ± 170 kHz, and leave the ions which are
3.5 MHz away from the qubit ions in frequency domain untouched.
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Fig. 2. (a) The relevant energy levels of Pr ions in an Y2SiO5 crystal. The qubit is
represented by two ground state levels |0〉 and |1〉, where |1〉 is initially populated. Qubit
levels are coupled through optical transitions |0〉 − |e〉 and |1〉 − |e〉, both of which have an
inhomogeneous FWHM linewidth of 170 kHz. (b) A schematic diagram of the absorption
spectrum of a qubit in a zero absorption spectral window. Peak 1-3 represent absorption
from |0〉 to each level of the excited states, and peak 4-5 from |1〉 to the two lower levels in
excited state, respectively. The distance from peak 2 or peak 5 to the edges of the pit is 3.9
MHz.

In the following passage we set
��ψtg

〉
= 1√

2
(|1〉 + i |0〉) as an example, to demonstrate the pulse

performance in the ensemble REI system. The pulse duration is set to tf = 4 µs for all cases
shown in this work, which is restricted by practical limitations such as the maximally available
intantaneous Rabi frequencies, and maximal rising speed in Rabi frequency. The optimized
an parameters are: a2 = −1.10, a6 = 0.06, and a8 = 0.02. Dynamics of Ωp,s in Eqs. (12) and
(13) as well as the state evolutions are shown in Fig. 3(a) and 3(b), respectively. The maximal
instantaneous Rabi frequencies are less than 1.6 MHz for both fields, which is a realistic value
for current ensemble experiment implementations. The final population shown in Fig. 3(b) is
equally distributed in |1〉 and |0〉, while |e〉 is unpopulated as expected. Within the operation
period, the average time that ions spent in the excited state is 0.7 µs, which is reduced by a factor
of 6 compared to the previous value obtained with CHS pulses [5]. This reduction would clearly
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improve the operational fidelity for Pr3+ qubits, where T2 is 50 µs for the excitation density of
3× 1014/cm3 used in reference [5]. The relatively high ratio between the time spent in the excited
state and T2 was concluded to be the primary limitation to the fidelity in experiment [5].
In the following, the performance of the pulses shown in Fig. 3(a) is evaluated from two

aspects: robustness of fidelity against frequency detuning around the center (section 3.1); and the
off-resonant excitations on ions which sit >3.5 MHz away from the qubit (section 3.2).

3.1. Ultra-robust fidelity

Fidelity of achieving the arbitrary single qubit state (ASQS)
��ψtg

〉
is calculated as

F =
��〈ψtg |ψ(tf)

〉��2 , (18)

where |ψ(tf)〉 = [C1(tf),Ce(tf),C0(tf)]T denotes the state of qubit at t = tf . Cn(tf) (n=1, e, 0) is
the probability amplitude of the final state, which is the numerical solution of the three-level
coupled differential equations. These equations originate from the Schrödinger equation and read

ÛC1

ÛCe

ÛC0


= −

i
2


0 Ωp 0

Ωp 2∆ Ωse−iϕa

0 Ωseiϕa 0


·


C1

Ce

C0


(19)

where ∆ represents the detuning between the individual transition frequencies of the inhomoge-
neously broadened qubit ions and the center frequency of the pulses.
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Fig. 3. (a) Time dependence of Rabi frequencies, where the solid-red (dashed-blue) line
denotes Ωp (Ωs). (b) Time evolution of the population on level |1〉 ( Solid-red line), |0〉
(dashed-green line) and |e〉 (dash-dotted-blue line). a2 = −1.10, a6 = 0.06 and a8 = 0.02,
which are optimized to achieve high robustness against frequency detuning and minimize
the off-resonant excitations.

��ψtg
〉
= 1√

2
(|1〉 + i |0〉).

The dependence of F in Eq. (18) on frequency detuning ∆, using the optimized an parameters
mentioned above, is shown as the solid-red curve in Fig. 4. Within ±340 kHz around the center
frequency the average fidelity is 99.8%. Above ±3.5 MHz the fidelity stabilizes to 50 %, which
is because the ions at that spectral range still remain in the initial state of |1〉 as they are hardly
excited (shown later in Fig. 6). The feature inbetween ±[1, 3.5] MHz frequency detuning does
not matter, as there are no ions there because they have been removed by optical pumping. In
comparison, the fidelity achieved by the CHS pulses in simulation is shown as the blue-dashed
curve (the parameters used here are the same as those in [5]), where the average fidelity over
±340 kHz (±170 kHz) is 86.9% (98.3%). Clearly the robustness in fidelity of shortcut pulse is
improved, and the pulse duration is only one quarter of that in the previous pulses.
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Fig. 4. Dependence of fidelity of achieving
��ψtg

〉
= 1√

2
(|1〉 + i |0〉) on frequency detuning.

solid-red line: fidelity achievedwith the shortcut pulses developed in this workwith optimized
parameters (a2 = −1.10, a6 = 0.06 and a8 = 0.02). Solid-blue line: the fidelity achieved by
the complex hyperbolic secant pulses used previously. The insert is a magnification of the
center frequency range.

Robustness of fidelity in response to fluctuations in both Ωp and Ωs (assume both fields are
generated from the same light source) for the shortcut pulses is shown in Fig. 5(a), where
blue-dashed (solid-red) line shows the dependence under condition of no detuning (with 170
kHz detuning), and η describes the relative change in Rabi frequencies, i.e. η = ∆Ωp,s/Ωp,s. The
dependence does not change appreciatively in response to different detunings. In both cases,
fidelity is much less sensitive on positive fluctuations than the negative ones, This indicates that
it is safer to have higher Rabi frequencies than lower ones in the implementation of the pulses.
The dependence of using CHS pulses is shown in Fig. 5(b), where fidelity is very robust against
Rabi fluctuations if there is no detuning (dashed-green). However, fidelity drops clearly in the
presence of detuning (solid-purple) and there is no significant difference in sensitivity between
positive and negative fluctuations.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.90

0.92

0.94

0.96

0.98

1.00

η

F

∆ = 0
∆ = 170 kHz

(a)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.90

0.92

0.94

0.96

0.98

1.00

η

F

∆ = 0
∆ = 170 kHz

(b)

Fig. 5. Dependence of fidelity of achieving
��ψtg

〉
= 1√

2
(|1〉 + i |0〉) on the fluctuations in

Rabi frequencies for shortcut pulses (a) and complex hyperbolic secant pulses (b), where
η describes the relative change in Ωp,s. Blue-dashed and green-dashed curves show the
dependences under conditions of no detuning, and solid-red and solid-purple for the cases
where detuning is 170 kHz.
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3.2. Low off-resonant excitations

Besides the robustness against frequency detuning, high-fidelity qubit operations in ensemble
REI system also require low off-resonant excitations on the ions that are spectrally close to the
qubit ions. In the ideal case, these ions should not be affected by the light pulses targeting the
qubit ions, but rather remain in their initial states. Fig. 6(a) shows the population of the final state
|ψ(tf)〉 in levels |1〉, |e〉 and |0〉 as function of detuning frequencies with the same optimized an
values as in Section 3.1. At far off-resonant frequencies (>5 MHz), the ions indeed remain in the
initial state |1〉. For those ions with detuning above 3.5 MHz, less than 2% are transferred to
state |0〉 by the light pulses. While this is not perfect, it might be acceptable as the ion density in
this interval is less than that of the qubit ions, and can be further reduced as the robustness region
over frequency detuning does not need to be as large as ±340 kHz, considering the ±170 kHz
Gaussian frequency distribution of the ensemble ions in the qubit. As a comparison, using the
CHS pulses the off-resonant excitation is below 2% for detuning above 1.2 MHz, and nearly zero
at 3.5 MHz, which is better than the shortcut pulses. The conceivable reason for this may be that
the spectral coverage of the shortcut pulses is larger as Rabi frequencies change with time more
rapidly.
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Fig. 6. Population of final state |ψ(tf)〉 in level |1〉 (solid-red), |e〉 (dash-dotted-blue) and
|0〉 (dashed-green), and as a function of detuning frequencies with optimized an values.
The off-resonant excitation at 3.5 MHz is less than 2.0%, which can be further reduced by
sacrificing the width of the robust region in the center.

3.3. Application examples for other operation tasks

The protocol discussed above can be applied to any single-qubit operation tasks as long as the
initial state is known. Below we provide two examples.

(i) Population transfer from state |1〉 to |e〉 in a two-level system
Let β(t) ≡ 0, the three-level model described in Eqs. (1)-(8) reduces to a two-level model.

Rabi frequencies in Eqs. (4) and (5) turns to

Ωp = 2 Ûγ(t), Ωs = 0. (20)

Eq. (6) tells us that the boundary conditions on γ(t) may be

γ(0) = 0, γ(tf) = −π/2. (21)

We propose an ansatz on γ(t) as

γ(t) = −
π

2tf
t +

n=2k∑
n=1

an sin
(

nπ
tf

t
)
, (22)
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where coefficients an satisfy Eq. (16) and

a2 + 2a4 + 3a6 + 4a8 + ... + k · a2k = 0.25. (23)

Again considering t f = 4µs and k = 4, the optimized parameters are a2 = 0.50, a6 = 0.14, and
a8 = 0. The pulses can achieve an average fidelity of 99.5% within ±320 kHz frequency detuning,
as shown in Fig. 7(a), which is slightly lower than the fidelity of 99.9% that CHS pulses can
achieve.

Figure 7(b) shows the state evolution (solid-red line) on a Bloch sphere where ∆ = 170 kHz. In
case of no detuning, the state evolves along the great circle in v-w plane, but at positions around
each pole it walks back and forth in a way that is more complicated than with a square pulse.
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|1⟩ 

Fig. 7. (a) Dependence of the fidelity (F) for achieving the target state i |e〉 on frequency
detuning ∆. (b) State evolutions (solid-red line) on a Bloch sphere where ∆ = 170 kHz. The
dashed lines are the three perpendicular great circles in u-v, u-w and v-w plane.

(ii) Driving an arbitrary superposition state, |ψi〉 = cos θb |1〉 + sin θbeiϕb |0〉 (θb and ϕb are
arbitrary angles in the range of [0, 2π]), into target state |0〉 or |1〉.
Here we take the target state |1〉as an illustration. The process is exactly the time reverse of

creating an ASQS from state |1〉. The boundary conditions in Eq. (9) have to be changed to
γ(0) = π, γ(tf) = 0,

β(0) = π − θb, β(tf) = 0,
(24)

and ϕ = ϕb .
Instead of Eq.(10) we assume

γ(t) = −
π

tf
t + π +

n=2k∑
n=1

an sin
(

nπ
tf

t
)
, (25)

and Eqs.(11)-(15) remain unchanged. The required conditions on an are as follows:
a1 + 3a3 + 5a5 + 7a7 + ... + (2k − 1) · a2k−1 = 0

a2 + 2a4 + 3a6 + 4a8 + ... + k · a2k = 0.5.
(26)

where k is an integer. Here we again limit k = 4 for the same reason as discussed previously.
Taking |ψi〉 = (|1〉 + i |0〉)/

√
2 as an example, the fidelity within ±520 kHz is above 99.9%

with optimized parameters of a2 = 1.06, a6 = 0.16, and a8 = 0. Here both the Rabi frequencies

                                                                                               Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8276 



and optimized parameters are different from those in Fig. 3(a). One can also reuse the pulses
presented in Fig. 3(a) by reversing it in time as follows:

Ω
new
p,s = −Ωp,s(tf − t) (27)

where Ωp,s are shown as Eq. (12) and (13). The advantage of this option is that one can reuse the
an values optimized previously (a new optimization might improve the performance slightly).

4. Discussion and conclusion

In this article, we propose to combine the inverse engineering based on the LR invariant with
the optimization of the multiple degrees of freedom provided by the proper ansatz, to design
high-fidelity and experimentally-realistic initialization pulses. The freedom left provides us the
flexibility of tailoring the quantum control to be robust against the physical imperfections, in
the meanwhile keeping the off-resonant excitations on frequency-neighboring qubits reasonably
low. These features, especially the last one, is crucial for achieving high-fidelity manipulation on
qubits which are closely spaced in frequency [35], for example, superconducting transmon qubits
and REI qubits. Instead of frequency detuning and off-resonant excitation, the optimization can
also be done for other physical quantities, for example, the time that qubit spend in the excited
state, and lowest maximal Rabi frequencies. As an example, the protocol is used to theoretically
derive pulses from a simulation of an ensemble REI system. Nonadiabatic pulses to perform
single qubit manipulation between |1〉 and an arbitrary superposition state are developed with
an operation time of 4 µs and realistic Rabi frequencies. By optimizing the pulse parameters,
simulations show that the average fidelity (assuming an infinite T2) is 99.8% over a frequency
detuning range as large as ±340 kHz, and the off-resonant excitation can be reasonably low. In
comparison, in the same system a fidelity of 86.9% (98.3%) over ±340 kHz (±170 kHz) detuning
range was achieved by CHS pulses. The significant difference between the shortcut pulses shown
in this work and the CHS pulse is that the average time that ions spend in excited state is reduced
by a factor of 6. This reduction is important for a decoherence-limited system. Considering
the experimental dephasing time of 50 µs (T2) for Pr ions, the fidelity of using our pulses is
decreased to 99.1% whereas it is only 83.2% using the CHS pulse. Here the fidelity is estimated
as

〈
ψtg

�� ρ ��ψtg
〉
, the density matrix is ρ = e−tu/T2 ρideal + (1 − e−tu/T2 )ρmixed [5], and tu = 0.7 µs.

The decoherence only reduces the fidelity by 0.7% using our pulses, benefiting from a relatively
large ratio of tu/T2. The fidelity are further improved to 99.8% if qubits ions with long T2 are
used, for example Eu3+:Y2SiO5 , where T2 can be 2.6 ms in a magnetic field of 100 G [33].
Comparing with the counter-diabatic driving shortcut protocol [25–28], our pulse-designing

protocol is more straightforward as the qubit instantaneous state analytically depends on the pulse
parameters, and provides more degrees of freedom to construct and tailor the pulses envelope so
as to achieve the required frequency selectivity, thus obtain high-fidelity manipulation between
two arbitrary qubit superposition states. Pulses developed in counter-diabatic protocol can
also achieve an arbitrary superposition state [42] and can also be optimized along with unitary
transformation [30], but involving some complexities. The state evolution depends strongly on
adiabatic reference of pre-guessed pulses [27, 30]. Therefore, different systems with their own
properties require unique shortcut design, which means that it is more obvious to choose inverse
engineering for the required frequency selectivity, which is rather important for quantum control
on qubits closely spaced in frequency.
The protocol proposed here can be in principle extended to a more generic n-level (n>3)

system. For instance, the LR invariant of a four-level system has been found [43], and shortcut to
adiabaticity have been carried out by using 4D rotation [44, 45]. Of course, the similar protocol
can be used and further optimized with respect to errors or noises, when the state evolution is
parameterized.
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Finally, we shall emphasize that the method presented here are applied to operations that start
from a known initial state. This is different from the CHS pulses in dark state operations, which
work for arbitrary operations on an unknown state. Optimally shortcut to adiabatic pulses for
general gate operations in a three-level system need to be investigated. However, by dropping
the requirement that they work on arbitrary inputs, fast and robust pulses with higher fidelity
can be developed, which is helpful to initialize ancilla qubits used in error correction towards
fault tolerant quantum computing. It can be applied to any quantum computing systems as well,
where qubit is addressed in frequency.

APPENDIX

A. Optimization of the pulses parameters an

Parameters an in all pulses shown above are optimized by checking the dependence of fidelity
and off-resonant excitations in the |0〉 state on frequency detuning (∆) through manually scanning
the an parameters in three steps.

Step (1): Let a6 = a8 = 0, scan a2. The 2-dimensional dependence of fidelity and off-resonant
excitations on both a2 and ∆ is shown in Fig. 8(a) and Fig. 8(d), respectively. Ideally the fidelity
within | ∆ |≤ 170kHz range should be as close to 1 as possible, and the off-resonant excitations
outside ±3.5 MHz should be as low as possible. Fig. 8 (a) tells that a2 = −1.10 is a good starting
point.
Step (2): Let a2 = −1.10 and keep a8 = 0, scan a6. Fig. 8(b) and Fig. 8(e) shows the results.

a6 = [0.04, 0.12] is better, and we tentatively set a6 = 0.06 and continue scan a8 as follows.
Step (3): Let a2 = −1.10 and a6 = 0.06, scan a8. Fig. 8(c) and 8(f) tell that a8 = [−0.06, 0.06]

is better.
Repeat Step (3) for every value of a6 in the range of [0.04, 0.12] in step of 0.02. Results show

that parameters of a2 = −1.10, a6 = 0.06, and a8 = 0.02 provide the best performance. Average
fidelity is 99.8% over the detuning range of ±340 kHz, and the off-resonant excitation is kept
below 2.0%.

To illustrate how the fidelity and off-resonant excitation change in response to above scanning
steps, the dependence of them on ∆ with optimized an values get in each step are plotted in
Fig. 9(a) and Fig. 9(b), respectively. The dash-dotted-blue line in each figure represents
the case in step 1 where a2 = −1.10, a6 = a8 = 0, the dashed-green line in Step (2) where
a2 = −1.10, a6 = 0.06, and a8 = 0, and the solid-red line in Step (3) where a2 = −1.10, a6 = 0.06
and a8 = 0.02.

The optimization method used here is more intuitive to see the dependence of performance on
the change in each parameters, but is less efficient. A faster optimization method using advanced
optimization algorithms might be used and give different optimized parameters. However, the
main results built under the theoretical frame presented in this work will not be altered by different
parameters or optimization methods.

B. Summary of all pulses for various operation tasks

The pulses and optimized parameters for various operation tasks mentioned in the article are
summarized in Table 1 below.
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Fig. 8. Optimization of an values. Fidelity (a-c) and off-resonant excitations in |0〉 state
(d-f) as function of frequency detuning while scanning pulse parameters. (a) and (d) scan a2,
a6 = a8 = 0; (b) and (e) Scan a6, a2 = −1.10, and a8 = 0; (c) and (f) Scan a8, a2 = -1.10,
a6 = 0.06.
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Fig. 9. Fidelity (a) and off-resonant excitations (b) on |0〉 state as a function of frequency
detuning in the three scanning steps. Dash-dotted-blue lines: a2 = −1.1, a6 = a8 = 0.
Dashed-green lines: a2 = −1.1, a6 = 0.06, and a8 = 0. Solid-red lines: a2 = −1.1, a6 =
0.06, and a8 = 0.02.
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Table 1. The pulses and optimized an for various operation tasks, where |ψin〉 (
��ψtg

〉
)

denotes the initial (target) state.
���ψ′tg〉 = cos θa |1〉 + sin θaeiϕa |0〉,

���ψ′in〉 = cos θb |1〉 +
sin θbeiϕb |0〉, and a1,3,5,7, = 0 in all cases.

] |ψin〉
��ψtg

〉
ansatz Rabi frequencies optimized an system

1 |1〉
���ψ′tg〉 γ(t) = π

t f
· t +

∑n=8
n=1 an · sin( nπt f · t) Ωp = Ûγ(t) · [(π − θa) · cos γ(t) sin β(t) + 2 cos β(t)] a2 = −1.1

3-levelβ(t) = π−θa
2 · [1 − cos γ(t)] Ωs = Ûγ(t) · [(π − θa) · cos γ(t) cos β(t) − 2 sin β(t)] a4 = 0.17

a2 + 2a4 + 3a6 + 4a8 = −0.5 a6 = 0.06

a8 = 0.02

2 |1〉 i |e〉

γ(t) = − π
2t f · t +

∑n=8
n=1 an · sin( nπt f · t) Ωp = 2 Ûγ(t) a2 = 0.5

2-levelβ(t) = 0 Ωs = 0 a4 = −0.335

a2 + 2a4 + 3a6 + 4a8 = 0.25 a6 = 0.14

a8 = 0

3
��ψ′in〉 |1〉

γ(t) = − πt f · t + π +
∑n=8

n=1 an · sin( nπt f · t) Ωp = Ûγ(t) · [(π − θb) · cos γ(t) sin β(t) + 2 cos β(t)] a2 = 1.06

3-levelβ(t) = π−θb
2 · [1 − cos γ(t)] Ωs = Ûγ(t) · [(π − θb) · cos γ(t) cos β(t) − 2 sin β(t)] a4 = −0.52

a2 + 2a4 + 3a6 + 4a8 = 0.5 a6 = 0.16

a8 = 0
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