Journal article Open Access
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Graph matching</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Independent set</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">König property</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Graph reduction</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Graph algorithm</subfield> </datafield> <controlfield tag="005">20200120170827.0</controlfield> <controlfield tag="001">3532849</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">InnoRenew CoE; University of Primorska; University of Szeged</subfield> <subfield code="a">Miklós Krész</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">621910</subfield> <subfield code="z">md5:5b369939d1da7dcd102a9eceb1ffdea5</subfield> <subfield code="u">https://zenodo.org/record/3532849/files/Bartha-Krész2019_Article_OnTheKönigDeficiencyOfZero-red.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-11-06</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-innorenew</subfield> <subfield code="o">oai:zenodo.org:3532849</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="p">Journal of Combinatorial Optimization</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Department of Computer Science, Memorial University of Newfoundland</subfield> <subfield code="0">(orcid)0000-0002-0996-8769</subfield> <subfield code="a">Miklós Bartha</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">On the König deficiency of zero-reducible graphs</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-innorenew</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">739574</subfield> <subfield code="a">Renewable materials and healthy environments research and innovation centre of excellence</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>A confluent and terminating reduction system is introduced for graphs,which preserves the number of their perfect matchings. A union-find algorithm is presented to carry out reduction in almost linear time. The K&ouml;nig property is investigated in the context of reduction by introducing the K&ouml;nig deficiency of a graph G as the difference between the vertex covering number and thematching number ofG. It is shown that the problem of finding the K&ouml;nig deficiency of a graph is NP-complete even if we know that the graph reduces to the empty graph. Finally, the K&ouml;nig deficiency of graphs G having a vertex v such that G &minus; v has a unique perfect matching is studied in connection with reduction.</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1007/s10878-019-00466-2</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="q">alternateidentifier</subfield> <subfield code="a">1382-6905</subfield> <subfield code="2">issn</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 70 |
Downloads | 89 |
Data volume | 55.3 MB |
Unique views | 66 |
Unique downloads | 87 |