Journal article Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3532849</identifier> <creators> <creator> <creatorName>Miklós Bartha</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0996-8769</nameIdentifier> <affiliation>Department of Computer Science, Memorial University of Newfoundland</affiliation> </creator> <creator> <creatorName>Miklós Krész</creatorName> <affiliation>InnoRenew CoE; University of Primorska; University of Szeged</affiliation> </creator> </creators> <titles> <title>On the König deficiency of zero-reducible graphs</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>Graph matching</subject> <subject>Independent set</subject> <subject>König property</subject> <subject>Graph reduction</subject> <subject>Graph algorithm</subject> </subjects> <dates> <date dateType="Issued">2019-11-06</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="issn">1382-6905</alternateIdentifier> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3532849</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s10878-019-00466-2</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/innorenew</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>A confluent and terminating reduction system is introduced for graphs,which preserves the number of their perfect matchings. A union-find algorithm is presented to carry out reduction in almost linear time. The K&ouml;nig property is investigated in the context of reduction by introducing the K&ouml;nig deficiency of a graph G as the difference between the vertex covering number and thematching number ofG. It is shown that the problem of finding the K&ouml;nig deficiency of a graph is NP-complete even if we know that the graph reduces to the empty graph. Finally, the K&ouml;nig deficiency of graphs G having a vertex v such that G &minus; v has a unique perfect matching is studied in connection with reduction.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/739574/">739574</awardNumber> <awardTitle>Renewable materials and healthy environments research and innovation centre of excellence</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 71 |
Downloads | 90 |
Data volume | 56.0 MB |
Unique views | 67 |
Unique downloads | 88 |