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Abstract—Overtaking is a challenging task in the field of
autonomous driving, especially on roads with an opposite lane
and oncoming vehicles. Since trajectory planning is repeated
cyclic it is highly important to trigger the maneuver only if it is
guaranteed that collision-free trajectories that satisfy kinematic
constraints exist at each planning step. The goal of this paper is
to present an algorithm for planning overtaking trajectories on
large temporal horizons in real-time. The main idea is as follows:
once overtaking is desired by the behavior module an initial
trajectory is simulated using a path tracking control algorithm
for lane changing combined with a classical PI-controller for
approaching the target speed. The controllers are parametrized
in a way that the simulated trajectory will satisfy kinematic
constraints. If no collisions are detected a corridor containing
the simulated trajectory is created to state constraints for a
subsequent optimal control problem to relax the trajectory and
smooth it to be comfortable to the vehicle passengers.

I. INTRODUCTION

A. Motivation

Trajectory planning is a crucial requirement for au-
tonomous driving. Several methods able to plan safe and
comfortable trajectories for lane keeping in real-time exist
already [1], [2], [3], [4]. In scenarios where e.g. a tractor
drives in front of the ego vehicle, more complex tasks, such
as overtaking may be desired by the vehicle passengers. Ob-
viously passing is a complicated procedure for an automated
vehicle but for humans as well. This becomes clear when
considering a person who has to look around several times
to percept the environment and to decide whether overtaking
is safe or not. Furthermore one has to additionally take into
account social criteria like being polite and not to merge
back into the original lane too early. In order to realize
autonomous driving in the long-term and to enable whole
missions of an automated vehicle it is necessary to be able to
overtake in order to not being stopped by slow moving traffic
participants for too much time. The goal of this paper is to
present a real-time capable approach for trajectory planning
in overtaking scenarios. We will show how to ensure the
existence of valid trajectories in terms of collision-freeness
and kinematic feasibility in each planning step once the ma-
neuver is triggered. Therefore the temporal horizon is chosen
sufficiently large in order to make sure the maneuver is
completed at the end of the trajectory. The rough procedure is
as follows: in order to predict further traffic participants, the
well-known Kalman filter is utilized. Probabilistic prediction
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information is used to calculate forbidden zones that may be
occupied by the predicted objects in the future. Subsequently
a rough ”reference trajectory” is simulated using a pure-
pursuit-steering controller for lane changing combined with
a PI-velocity controller for approaching the target speed.
Satisfaction of kinematic constraints is ensured since con-
trollers are parameterized properly. We introduce a concept
for a driving corridor that is placed around the reference
trajectory and will be checked against the forbidden zones
in order to identify collisions. Finally an optimal control
problem is stated to relax the reference trajectory in terms of
acceleration and jerk. In addition to the problem statement in
[4] constraints are added from the driving corridor to make
sure that relaxing the trajectory will not lead to collisions.
In case that collisions with forbidden zones are detected
the planner will not overtake but follow the leading vehicle
instead. To make sure that once overtaking is triggered there
will exist valid trajectories in each subsequent step, the
prediction is parametrized conservative and thus the corridor
will be enlarged in each step.

B. Related Work

The method presented in [5] splits the task of overtaking
into 3 phases: diverting from the lane, driving straight in
the adjacent lane and return to the original lane. The main
idea is then to model an overtaking trajectory using quintic
polynomials and to determine the exact coefficients by solv-
ing an optimal control problem to minimize the total kinetic
energy exerted during overtaking by adhering to kinematic
constraints at the same time. In [6] an approach is shown,
that uses trigonometric functions to describe the overtaking
path. The authors argue, that the path benefits from its
trigonometric nature, e.g. differentiability and thus smooth-
ness is guaranteed to be present everywhere on the path. To
consider kinematic constraints, such as lateral acceleration,
the curvature is reduced by stretching the sinus function and
thus stretching the absolute distance covered during the over-
taking process. The approach in [7] states an optimal control
problem whose solution results in an overtaking trajectory.
Constraints are composed from geometric information of
the road and surrounding vehicles. Furthermore kinematic
restrictions are incorporated as constraints as well. To not
pass too close, the deviation towards a desired lateral distance
to the leading vehicle is incorporated into the cost functional.
Furthermore deviations from the target speed are penalized to
make sure that passing will succeed sufficiently fast. To gen-
erate a smooth and fuel-saving behavior the models controls



are penalized as well. Surrounding vehicles are respected
by adding further constraints in form of ”ramp barriers” to
achieve convexity. Diverse maneuver variants and how they
can be described combinatorial is investigated in [8]. Once a
maneuver is identified, a trajectory is calculated by solving
an optimal control problem similar to the one in [3]. To plan
overtaking trajectories, constraints are added to the problem
to enforce the desired behavior and to make the solution
converge into a trajectory that passes the leading vehicle.
The authors of [9] argue that optimal control problems for
trajectory planning require constraints that are intrinsically
logical. Thus, they state a mixed integer quadratic problem
(MIQP) and wrap continuous constraints into logical ones.
To perform overtaking, ramp barriers like already shown in
[7] are reformulated as logical constraints and incorporated
into the mixed integer quadratic program.
The goal of this paper is to present a novel approach
that checks the existence of a feasible trajectory in terms
of constrains by executing a prior simulation phase with
subsequent collision checking. Only if it is indicated that
at least one feasible solution exists, the simulated overtaking
trajectory gets further processed.

II. PROBABILISTIC FORBIDDEN ZONES

Prediction of traffic participants is indispensable for tra-
jectory planning. To plan conservative and to leave enough
leeway to react in time to unexpected behavior, the prediction
has to provide more information than only an estimate of
deterministic vehicle states over time. A popular way that
is proven to deliver excellent results in practice is to utilize
probabilistic approaches. E.g. in [10] a particle filter together
with an appropriate driver model is applied to estimate the
probability distribution of vehicle states. In [11] a nonlinear
bicycle model combined with information from a digital map
is used within an extended Kalman filter. The result consists
of diverse motion hypothesis that are represented as discrete
normal distributed states over time.
Since we aim to perform trajectory planning based on prior
performed predictions, we use a linear Kalman filter whose
equations are very fast to evaluate and to have enough time
left for the subsequent planning. Because overtaking shall
be performed on sections with low curvature only, where
vehicles usually do not have to decrease their speed due to
the road structure, we use a constant velocity model within
the Kalman filter. Deviations between real and predicted
movement are considered by uncertainty of the Gaussian
probability distribution. The discretized model equation is
straight forward as follows:[

st+∆t

ṡt+∆t
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xt+∆t
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Probabilistic information at time t is described by µt and P t,
mean and covariance of a Gaussian probability distribution
function. While the mean µt is equal to xt, the covariance
is propagated by

P t+∆t = AT
∆tP kA∆t +Q. (2)
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Fig. 1. Probabilistic forbidden zones within the time interval [ti, ti+1] to
consider longitudinal prediction uncertainty.

The process noise Q can be increased if the model does
not match reality with sufficient accuracy. When applying
equations 1 and 2, it is implicitly assumed that all vehicles
keep staying on the lane they were associated with.
To attain probabilistic forbidden zones, the Kalman equations
of prediction are applied for each relevant vehicle on the
road over the temporal planning horizon T . Vehicle shapes
are described as usual by rectangles. Therefore distances
from a vehicles gravity center to its rear respective front are
indicated by dgtf respective dgtr. Vehicle width is expressed
by w. The forbidden zone for the i-th vehicle at time t is
then represented by

Ωt,i = [x−ti , x
+
ti ]× [−wi/2,+wi/2]. (3)

With
x−ti = µt,i − 3σt,i − dgtr,i

x+
ti = µt,i + 3σt,i + dgtf,i.

(4)

To make sure that the trajectory is not only collision-free
at each discrete time instant, but also between them, equation
3 is adapted for time intervals as follows:

Ω[ti,ti+∆t] = [x−ti , x
+
ti+∆t]× [−wi/2,+wi/2]. (5)

III. TRAJECTORY SIMULATION

After predicting relevant vehicles as explained in the previ-
ous section an initial trajectory is simulated and checked for
collisions against the forbidden zones. During the simulation
phase, all vehicles except for the leading vehicle, which we
will refer to as the ”overtaking target”, are disregarded. For
trajectory simulation the following vehicle model is used:

ẋ
ẏ

θ̇
v̇
a
δ

 =


v cos θ
v sin θ

v/L tan δ
a
u1

u2

 . (6)

With the vehicles gravity center indicated by [x, y], yaw angle
θ, velocity v, wheelbase L, steering angle δ and acceleration



a. Inputs u1 and u2 are the control variables which are to
be set by the controllers. Road structure is represented by
the center lines of the adjacent lanes relevant for overtaking.
To make sure the maneuver is completed at the end of the
planning horizon, the simulation must run through the 3
phases of overtaking: leaving, passing and merging. During
simulation, the reference trajectory is generated by applying
a pure-pursuit steering controller for path tracking combined
with a PI-velocity controller for approaching the target speed
as to see in [12]. To stay between acceptable acceleration
bounds the following relation can be deduced:

alat
!
≤alat,max

⇔ θ̇v
!
≤alat,max

⇔ v2/L tan δ
!
≤alat,max

⇔ δ
!
≤ arctan (alat,maxL/v

2) = δmax.

(7)

Thus, the steering angle δ is limited according to |δ| ≤ δmax.
For each phase of overtaking it is merely left to decide which
of both center lines need to be tracked. Figure 2 visualizes
the procedure: during the first 2 phases, the left lane can
be tracked, this leads to leaving and passing as desired. At
each time instant the ego vehicles position is projected onto
the right center line, resulting in the position xego(ti). As
soon as xego(ti) > xtarget(ti) + xsafety is satisfied, the right
lane will be tracked again and the vehicle returns back to
the original lane. The safety distance can e.g. be determined
by xsafety = vtargetTgap . Once the simulation has finished, the
lateral deviation of the last position of the reference trajectory
y(T ) and the right center line is compared. In case of a
distance smaller than a predefined value, we assume that the
ego vehicle has returned back to the right lane and overtaking
is completed.

IV. CORRIDOR CALCULATION

The main purpose of the corridor is to define the free-
space to be incorporated into the optimal control problem
as constraints. Obviously the actual free-space may become
arbitrary complex and therefore extremely difficult to express
from a mathematical point of view. Thus, it is desirable
to chose a simple representation to favor the subsequent
trajectory optimization. Additionally it must be ensured that
at least one trajectory exists within the corridor that stays
between dedicated acceleration bounds and thus satisfies the
kinematic constraints.
This is one major feature of our approach: since the corridor
will be constructed directly from the reference trajectory
which is calculated as explained in section III, it is guaranteed
that there exists at least one feasible solution within the
corridor. A representation of free-space that can efficiently
be integrated into the optimal control problem as constraints,
is to define a circle for every discrete time instant of the
prediction horizon. Each circle defines the space in which the
temporal dedicated trajectory support point (which indicates
the vehicles gravity center) must be located in. Figure 3 gives

an illustrative impression of the corridor consisting of circles.
To avoid collisions not only at every discrete time instant but
also between them, the space that can potentially be covered
at each interval [ti, ti+1] must be described mathematically.
Therefore figure 4 shows two adjacent trajectory support
points inside their dedicated circles. The space covered by
the vehicle shape according to the positions xi and xi+1

is colored gray. For the sake of simplicity the yaw angle is
assumed to remain constant within each interval.
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Fig. 4. Space reached by the vehicle shape within [ti, ti+1]. The yaw angle
is assumed to remain constant within the interval. Support must be located
inside the circles to not violate the corresponding constraints.

The corridor has to guarantee collision avoidance for a
trajectory whose support points are all located inside the
circles. The space that can be reached by the vehicle within
the temporal interval [ti, ti+1] is the union of reached spaces
according to figure 4 but for any possible configuration of
xi and xi+1.
Thus, the next issue is to describe the potential reachable
space for 2 adjacent support points that may vary arbitrarily
inside their circles. The actual shape is complex and therefore
hard to express. Not only for the sake of simplicity but
also to stay real-time capable, it is advisable to do an over
approximation. To keep the following deduction as simple
as possible we assume without loss of generality that the
circle mid-points have same y coordinates. In the first step,
the inner tangent is calculated as illustrated in figure 5.
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Fig. 5. Inner tangent between 2 adjacent circles. The connecting line
indicates the maximum angle range 2δψmax the vehicle may vary within.

Subsequently extreme values of the y coordinate are ap-
proximated as too see in figure 6.

From these corner points we are able to determine a
rectangle that covers the space between the circles. It remains
to compute the space covered by the vehicle rear and front
extensions. Therefore circles with the radii dgtf + w/2 and
dgtr + w/2 are placed around the smaller circles. Figure 7
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Fig. 2. Condition for changing the lane back: each trajectory point is projected onto the original lane. As soon as the projected vehicle shape is farther
away from the overtaking target than ssafety the tracked path is changed to the center line of the right lane. The color coding of the simulated trajectory
(from blue to red) indicates the time instances, blue indicates t = 0 and red t = T .

Fig. 3. Illustration of the driving corridor. Each circle is dedicated to a trajectory support point and indicates the area inside which the point may vary to
stay collision-free.
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Fig. 7. Over approximation of the potential covered vehicle
shape.

illustrates the procedure. Using the whole gray area would
lead to very restrictive behavior where collisions are detected
unnecessarily and overtaking trajectories will never be found.
Since it is known that the maximum and minimum values of
y the vehicle can cover, are the maximum and minimum
values of y of the rectangle, the red bounded area in figure
7 can be used for collision checking instead. This area can
be expressed by applying logical operations as follows:

S = R ∪ (C1 ∩ P ) ∪ (C2 ∩ P ). (8)

Where P indicates the area between the upper and lower
dashed line in figure 7. Thus, the approximated shape in
figure 7 must be checked for collisions with forbidden
zones corresponding to the same temporal interval. Since the
approximated shape composes of a rectangle and 2 circles
and the forbidden zones are described by rectangles as well,
all shapes to deal with are convex. This can be exploited
by using convex collision checking algorithms such as the
separate axis theorem to significantly reduce the run time.
Finally, the circle radii have to be determined. To keep
things simple, the same radius r is assigned to each circle
of the corridor. Subsequently collision checking is done as
described above. To figure out what radius is suitable, diverse
radii from rmax, . . . , rmin are applied, starting with the largest

value. The first radius that does not result in a collision is
considered as suitable.

V. OPTIMIZATION PROBLEM STATEMENT

To obtain the final trajectory an optimal control problem is
stated to smooth the reference trajectory within the corridor.
Therefore the problem statement in [4] is extended for
additional constraints. The general statement is as follows:

min
xi,x1,...,xN−1

J [xi,x1, . . . ,xN−1]

s.t. h(xi) ≤ 0, i = 3, . . . , N − 1.

(9)

With the cost function

J [x0,x1, . . . ,xN−1] =

N−2∑
i=2

L(xi,xdd,i,xddd,i)∆t

L(xi,xdd,i,xddd,i) = wspatialjspatial,i + waccjacc,i + wjerkjjerk,i
(10)

jspatial = ||xi − xRef||22 (11)

jacc = ||xdd,i||22 (12)

jjerk = ||xddd,i||22 (13)



Acceleration xdd,i and jerk xddd,i are calculated using finite
differences:

xdd,i =
xi+1 − 2xi + xi−1

∆t2
, (14)

xddd,i =
−xi−2 + 3xi−1 − 3xi + xi+1

∆t3
. (15)

There are two kinds of constraints: spatial constraints to make
the trajectory remain within the corridor and kinematic con-
straints to stay within acceleration bounds. Spatial constraints
are as follows:

h(xi) = ||xi − xRef,i||22 −R2
i ≤ 0. (16)

Kinematic constraints are formulated as:

h(xi) = ||xddd,i||22 − a2
max ≤ 0. (17)

The spatial term penalizes the deviation from the refer-
ence trajectory. Without smoothing terms the unconstrained
global optimal solution would obviously be identical with
the reference trajectory. To relax the trajectory in terms of
acceleration and jerk, the global optimum is moved by adding
appropriate smoothing terms 12 and 13. To make sure the
solution will remain within the corridor while not violating
kinematic restrictions, constraints 16 and 17 are added.

VI. ALGORITHMIC OVERVIEW

The following overview gives a further understanding
of what is done and in which order: At first all traffic

Overview

Predict each vehicle except the ego vehicle
Create probabilistic forbidden zones from predictions
Simulate an initial trajectory
Place the corridor around the trajectory, select circle
radii by:
for rmax, . . . , rmin do

Check corridor for collisions
if collision detected then

try next radius
else

use current radius
end if

end for
if no radius found then

return overtaking unsafe
end if
Solve the optimal control problem
return Overtaking trajectory

participants are predicted and the forbidden zones are de-
termined. Afterwards an initial trajectory is simulated using
a path tracking and a velocity controller. To maneuver around
further traffic participants during the simulation the tracked
center lines of the adjacent lanes are switched in the right
moments. Next, the trajectory is checked for intersections

TABLE I
PARAMETERS FOR SIMULATION

N v0 T kp kI amax

61 13.89m s−1 20 s 5 0.1 5m s−2

against the forbidden zones. In case no collisions occur, the
method breaks up and overtaking is assessed as unsafe. Oth-
erwise, the simulated trajectory is smoothed using quadratic
programming in the final step.

VII. EVALUATION

To validate the approach the traffic evolution during an
overtaking maneuver with an oncoming vehicle on the oppo-
site lane is investigated. The method is implemented within
C++, the non-linear optimization problem is solved using the
SQP-method of WORHP [13]. Figure 8 shows snapshots of
the scene at diverse time instants, the ego vehicle is drawn
in black and other vehicles in red. Corresponding velocities
and accelerations are shown in figures 9 and 10 respectively.
Before and after overtaking when the vehicle needs to move
in longitudinal traffic only, the decision layer switches to the
planner in [4].
Parameters for simulation are chosen as in table I.

The number of trajectory support points is indicated by
N . The target speed is v0, the temporal planning horizon
T has to be chosen large to make sure the maneuver can
be completed within the simulation phase of the algorithm.
Controller gains for path tracking and approaching the target
speed are kp and kI for proportional gain and integral gain.

As can be seen in figure 8 the ego vehicle leaves the
original lane and aims to track the left center line in the
very beginning of the scene. To approach the target speed
and to make sure that passing will succeed sufficiently fast,
the ego vehicle accelerates and thus reaches the target speed
v0 after t & 4 s. Merging back into the original lane is not
performed until the ego vehicle has a small buffer in front
of the overtaking target to not merge back too close. Speed
and acceleration values are smooth and thus trackable by the
vehicle controller, furthermore comfortability to the vehicle
passengers is increased contrary to non smooth values.

Figures 8, 9 and 10 show how the vehicle behaves if the
overtaking trajectory is tracked perfectly by the vehicle con-
troller. Of course it is of interest to see the planned trajectory
over the complete temporal horizon a well. Therefore figures
11, 12 and 13 show a snapshot of the planned trajectory at
t = 0 s.

The planned path starts towards the opposite lane as soon
as the maneuver is triggered. The acceleration takes large
values & 3 m s−2 at the very beginning of the horizon. Thus,
the velocity increases rapidly and the target speed is planned
to be reached after ≈ 2 s. The planned merge back takes place
after ≈ 6 s with a sufficient safety distance to the overtaking
target and the oncoming vehicle as well. Regarding figure 10
one can see a small ”dogleg” in the acceleration at ≈ 7 s, this
is because the planner switches back to longitudinal planning
as soon as the maneuver is finished. Nevertheless, velocity
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Fig. 10. Acceleration of the ego vehicle.

and acceleration are smoothed properly by the optimizer and
no constraints are violated at any time. Thus, the trajectory
is trackable by the vehicle controller and promising to be
comfortable to the vehicle passengers.
Trajectory planning cycles were repeated for 31 times and
during the overtaking maneuver, the average computation
time measured is tmeas = 43.68 ms.

VIII. CONCLUSION AND FUTURE WORK

The goal of this paper was to present a practical method for
planning overtaking trajectories in real-time. The main con-
cept is to firstly predict all traffic participants located on the
road using probabilistic Kalman-filtering method to obtain
forbidden zones over the prediction horizon. Subsequently
an aggressive designed path following controller to compute
a trajectory for overtaking the leading vehicle is simulated.
In the next step a corridor consisting of circles around each

support point of the initial trajectory is created to describe the
free-space. Finally an optimization problem is stated to relax
the initial calculated trajectory within the corridor. There are
2 main features of our approach: Firstly, it is ensured that
the end of the overtaking trajectory is located on the original
lane again and therefore the maneuver is completed at the
end of the planning horizon. Therefore the decision whether
overtaking should be performed or not can be made on a
trajectory level. The second feature is, that the corridor is
guaranteed to have at least one solution that is feasible in
the sense that is satisfies kinematic constraints.
To make the method more robust and thus applicable in
multiple scenarios the simulation of the reference trajectory
can be repeated with various sets of parameters to increases
the quality of the reference trajectory. To enlarge the corridor
circles radii can be determined locally instead of choosing
one global radius for every circle. This will reduce the costs
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according to the optimal control problem and thus the final
trajectory will be smoother and therefore more comfortable
for the vehicle passengers.
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