Conference paper Open Access

A Convolutional Approach to Melody Line Identification in Symbolic Scores

Simonetta, Federico; Cancino-Chacón, Carlos; Ntalampiras, Stavros; Widmer, Gerhard

Citation Style Language JSON Export

  "publisher": "ISMIR", 
  "DOI": "10.5281/zenodo.3530592", 
  "container_title": "Proceedeings of the 20th International Society for Music Information Retrieval Conference", 
  "language": "eng", 
  "title": "A Convolutional Approach to Melody Line Identification in Symbolic Scores", 
  "issued": {
    "date-parts": [
  "abstract": "<p>In many musical traditions, the melody line is of primary significance in a piece. Human listeners can readily distinguish melodies from accompaniment; however, making this distinction given only the written score -- i.e. without listening to the music performed -- can be a difficult task. Solving this task is of great importance for both Music Information Retrieval and musicological applications. In this paper, we propose an automated approach to identifying the most salient melody line in a symbolic score. The backbone of the method consists of a convolutional neural network (CNN) estimating the probability that each note in the score (more precisely: each pixel in a piano roll encoding of the score) belongs to the melody line. We train and evaluate the method on various datasets, using manual annotations where available and solo instrument parts where not. We also propose a method to inspect the CNN and to analyze the influence exerted by notes on the prediction of other notes; this method can be applied whenever the output of a neural network has the same size as the input.</p>", 
  "author": [
      "family": "Simonetta, Federico"
      "family": "Cancino-Chac\u00f3n, Carlos"
      "family": "Ntalampiras, Stavros"
      "family": "Widmer, Gerhard"
  "page": "924-931", 
  "publisher_place": "Delft, The Netherlands", 
  "type": "paper-conference", 
  "id": "3530592"
All versions This version
Views 4242
Downloads 2727
Data volume 40.9 MB40.9 MB
Unique views 3333
Unique downloads 2222


Cite as