
Governing Regression Testing in Systems of
Systems

Antonia Bertolino
ISTI–CNR
Pisa, Italy

antonia.bertolino@isti.cnr.it

Guglielmo De Angelis
IASI–CNR

Roma, Italy
guglielmo.deangelis@iasi.cnr.it

Francesca Lonetti
ISTI–CNR
Pisa, Italy

francesca.lonetti@isti.cnr.it

Abstract—Great advances in network technology and software
engineering have triggered the development and spread of Sys-
tems of Systems (SoSs). The dynamic and evolvable nature of
SoSs poses important challenges on the validation of such systems
and in particular on their regression testing, aiming at assessing
that run-time changes and evolutions do not introduce regression
in SoS behavior. This paper outlines issues and challenges of
regression testing of SoSs, identifying the main kinds of evolution
that can impact on their regression testing activity. Furthermore,
it presents a conceptual framework for governing the regression
testing of SoSs. The proposed framework leverages the concept
of an orchestration graph that describes the flow of test cases and
sketches a solution for deriving a regression test plan according
to test cases dependencies.

Index Terms—System of Systems, Regression Testing, Gover-
nance, Test Cases Orchestration

I. INTRODUCTION

Already more than two decades ago, in his highly-
referenced taxonomy of architecting principles for Systems-of-
Systems, Maier [1] referred to the latter as an emergent class
of systems. In that paper he attempted a definition of an SoS
as “an assemblage of components which individually may be
regarded as systems”, and which yields both operational and
managerial independence. In the following years until present
time, a growing literature has addressed the many and diffi-
cult challenges arising in SoS engineering, and several other
definitions have been proposed, sometime even misleading or
contradictory [2].

This difficulty in finding one comprehensive definition prob-
ably descends from the many different ways and purposes
by which the constituent systems can collaborate, as well
as from the inherent complexity of SoSs. A classification
useful to clarify the field is due to the US Department of
Defense and is reported by Nielsen and coauthors in their
recent systematic review [3]. Four different SoS categories are
defined: Directed, which are assembled and centrally managed
solutions conceived in order to satisfy a specific purpose;
Collaborative, which also foresee a shared management for the
system-as-a-whole, but this is not compelling and is accepted
in collaborative way; Acknowledged, which do not rely on a
centralized management authority, and keep managerial, oper-
ational and technical independence at the constituent system
level. The interactions among the constituent systems take
place by abiding by the role foreseen in the collaboration;

and Virtual, which do not rely on any managerial control, nor
even on any explicit shared purpose among the constituent
systems. Often in Virtual SoSs the interactions emerge due to
the combined usage of several independent systems that are
linked together by a final-user, and the SoS only exists with
respect to his/her perspective.

Nonetheless, and whatever its category, as for the engineer-
ing of any other software systems, also SoSs should undergo
an adequate testing campaign and in an earlier work [4] we
investigate how and to what extent existing test techniques can
be adapted to cope with SoS peculiarities.

One specific and prevalent type of testing is regression
testing [5], which is conducted after introducing changes or
evolution to ascertain that these have not caused undesired
issues, or regressions. This is commonly acknowledged as
the most demanding and costly part of the software testing
process [6].

Even though a common definition for an SOS does not
exist, all authors concur that evolution is a distinguishing
characteristic. SoSs evolve dynamically and are integrated at
run-time: Abbott [2] depicts the situation saying that SoSs are
open at the top, i.e., new applications can be created at any
time, and at the bottom, i.e., their underlying technology can
change, and their composition evolves slowly but continuously.
Therefore, in principle such continuous change and evolution
require that a framework is established in which the test
information (which test cases have been executed, when,
and with what results) related to the SoS is kept, and a
proper regression testing stage is established depending on the
occurring modifications.

Surprisingly, while the need for regression testing of SoS
(which we abbreviate as SoSRT) would seem obvious, we
found very little or null attention in the literature to this spe-
cific problem. Clearly the way and capabilities for conducting
the regression testing will also vary depending on the SoS
category. For the case of a Directed SoS probably testing
needs will not change much from the scenario of testing
a component-based system [7], thanks to the presence of a
centralized manager. On the opposite side, testing a Virtual
SoS is probably feasible only in the field along the directions
presented in [8] about service federations.

In this paper, we provide the following contributions: a
definition of SoSRT, a discussion of related challenges, and



a preliminary outline of a framework that addresses this
aim in the context of Collaborative and Acknowledged SoSs.
Specifically, Section II overviews the status of current research
on regression testing in the context of SoSs, while Section III
presents our contribution to this topic. Concluding remarks are
given in Section IV.

II. REGRESSION TESTING IN SOSS

As said in the Introduction, regression testing aims to
guarantee that the changes introduced in a program do not
harm the behavior of the existing software. A simple approach
for testing the modified software is to reuse the whole existing
test suite (i.e., retest-all). This strategy becomes not affordable
when the software evolves and the test suite size grows [5].
Many authors aim to make the regression testing activity
more cost effective by proposing techniques for: i) test suite
minimization to eliminate redundant test cases from the test
suite [9], or ii) test case selection in order to re-run only tests
related to the changed parts of the software [10], or iii) test
case prioritization to identify an ordering of the test cases
yielding early fault detection [11], [12].

Regression testing has been addressed for long time in the
literature, considering a variety of domains such as Service-
Oriented Architectures (SOAs) and configurable systems [13]
among the most recent ones, as well as new development
practices as Continuous Integration [14]. However, there is
not so much recent literature about regression testing of SoSs.

Harrold and Orso [6] overview the state of the research
and the state of the practice in regression testing, presenting
an analysis of major issues and challenges. They note that
despite significant research in regression testing, only a few of
techniques and tools developed by researchers and practition-
ers have been applied on large-scale real-world systems and
shown to be useful in practice. In many industrial contexts, test
cases selection and maintenance remain manual on the basis of
tester’s experience. This rises the need of automated methods
able to identify obsolete and redundant test cases. Among
the major issues of regression testing they identified test
suite maintenance and manipulation, while emerging research
challenges include: i) building richer models representing com-
plex testing information (e.g., relationships and dependencies
among test cases); and ii) finding new manipulation techniques
able to derive new test cases starting from existing ones.

This work contributes to both those research directions by
leveraging the concept of test case orchestration [15], which
refers to all those activities that dynamically organize the
execution of tests. Test case orchestration enables the declara-
tion of flows of test cases, and provides a means for running
existing test cases in different operational contexts: previous
test results can dynamically instantiate current parameters or
modify the execution environment. We discuss further test case
orchestration in the context of SoSRT in Sec. III,

Other model-based testing approaches not specifically tai-
lored for regression testing advocate the on-the-fly generation
of the next test case to execute [16]. These approaches and
their underlying theory [17] are partially fitting within the

context of SoSs. In fact, their main target usually is one black-
box system. Difficulties can raise from the derivation of a
behavioral model of the SoS or when the objective of the test
is the interactions among several constituent systems.

The authors of [18] present a more recent perspective of
regression testing challenges extracted from a set of empir-
ical studies. They distinguish two major categories: method
related challenges and organization related challenges. The
former concerns handling failures, performance measurement,
handling fault distribution, scalability of techniques, and tool
support. The latter includes test suite maintenance, information
availability, knowledge and skills of testers and management
support. Both these challenges categories are common to many
types of software systems including SoSs.

Other challenges are observed in an industrial case study of
a highly complex SoS [19]. Although a separate regression
testing phase is not performed in this study, the authors
identify among the main issues influencing the maintenance
of the regression test suite the high complexity and number of
test cases as well as the lack of guidelines for testing.

However, in the context of SoSs, specific regression testing
challenges arise because of their dynamic evolution and recon-
figuration during operation time. In some cases, the constituent
systems retain independent control and objectives: they may
evolve according to internal needs, operational directions and
managerial control; all these changes may be independent from
the purposes of any SoS the constituent could be engaged in.
This implies key challenges for regression testing. First, the
updates on the constituent systems or on their interactions may
lead to unintended emergent behaviours. Unpredictable scenar-
ios become more frequent as the number or the variability of
the constituent systems increase [20]. Another important chal-
lenge of SoSRT is related to their dimension and complexity.
SoSs could be very large-scale systems and many regression
testing methods developed for simple applications may not
scale up to address the complexity of these systems.

To handle these challenges the research on SoSRT must
take into account the dynamic evolution and how such changes
impact on the regression testing activity. Taking in mind that it
is not possible to outline all the possible changes that can affect
an SoS, we identify here some of the main kinds of evolution
for SoSs deserving to be subject to regression testing:

I. evolution of a constituent system within the SoS: if one
of the constituent systems is updated, because there is
for instance a new release of one of its software com-
ponents, or a new deployment or a new configuration
of the constituent system is set up, it is needed to test
that no regression has been brought in the SoS by the
modified system;

II. usage of additional functionalities of a constituent sys-
tem: functionalities of a constituent system which were
not exercised in the initial configuration of the SoS may
be required by components inserted at run-time. These
functionalities need to be tested before being used and
the existing test suites need to be augmented with new
tests addressing these additional functionalities;



III. interdependencies between constituent systems: testing
needs to assure the interdependencies between con-
stituent systems remain stable and reliable when a
new constituent system is integrated in the SoS or is
disassembled from it.

IV. operational independence of the constituent system: con-
stituent systems must be able to fulfill their operational
purposes not involved in the SoS mission in their own
right and when they are disassembled from the overall
SoS. SoSRT here aims at checking that SoS mission did
not impact its sub-systems.

Considering these main kinds of evolution for SoSs, we
sketch a definition of SoSRT: Let S be an SoS validated
on an existing test suite T , let S′ be a modified version
of S, let CS1, CS2, . . . , CSn be the constituent systems
engaged in S, SoSRT concerns the validation of S′ on a test
suite T ′ derived from T , when any (one or more) CSi ∈
{CS1, CS2, . . . , CSn} is affected by any of the evolution
kinds I-IV described above.

As said, a retest-all strategy (i.e., T ′ = T ), as well as
traditional test selection or prioritization approaches, are hard
to apply to SoSs, due to their dynamic and evolvable nature.
This implies the need of governance approaches that are
able to narrow the regression testing activities to those test
cases that are more likely to spot inappropriate or unexpected
behaviors. In this paper, we try to address this issue proposing
a framework able to dynamically identify the next test case to
execute in a given regression test suite, and at what time. We
refer to next section for a description of the proposed approach.

III. APPROACH PROPOSAL

Directed SoSs are often considered as a broader system that
is built from the composition of the functionalities offered
by each constituent part. The well-defined organization from
both the managerial and the operational perspective leads to
consider the engineering of these SoSs similar to the case
of a stand-alone system entirely conceived internally to a
single organization. In this sense, available approaches to
regression testing can be straightforwardly adapted to the
context of Directed SoSs. On the other hand, the complete
lack of any managerial and operational coordination in Virtual
SoSs hinders the identification of a systematic approach for
supporting the regression testing activities. For this reason,
the proposed approach does not address these classes of SoSs,
but specifically focuses on Collaborative and Acknowledged
categories. For both of them, it is reasonable to assume that
each constituent system is equipped with some kind of on-
purpose features (e.g., interfaces, communication channels,
bulletin boards, etc.) suitable for notifying the others about
evolution or changes on their status. In addition as Collabora-
tive and Acknowledged SoSs foresee a managerial supervision
of the constituents, it is also admissible to assume the presence
of an underlying layer that can access this information and that
is devoted to governing the regression testing activities on the
SoS from both a managerial and an operational perspective
(see Fig. 1).

Fig. 1. A Framework for Governing SoS Regression Testing

In line with the literature on software testing, it is possible
to reconsider the responsibility levels of each testing phase
to the case SoSRT: from unit testing, to integration and
contract testing, up to end-to-end testing. At each level, the
degree of automation as well as the specific implementation
of regression tests could be declined in terms of either a
managerial or a technical perspective, depending on the cases.

In particular, regression tests aiming at validating the in-
ternal behavior of each constituent can be seen as unit-level
checking of the SoS (i.e., 1 in Fig. 1). Regression integration
tests in SoSs are devoted to validate the communication paths
and the interactions among the composed sub-systems (i.e.,
2 in Fig. 1). Typically their goal is to gain confidence that
each sub-system can communicate with the others, rather than
to fully test behavioral conformance. As such, regression test
cases for integration are often considered as a fast feedback
toward integration. Similarly, the responsibility of regression
tests depending on contracts is to check interactions at the
boundary of the constituents and to assert that each constituent
system in the SoS meets its contract (either functional or not)
while interacting with the others (i.e., 3 in Fig. 1). Finally,
regression end-to-end tests aim to verify that the SoS achieves
its system-as-a-whole goals. Usually, they are expected to
focus on testing the messages between the sub-systems but
also to validate that any extra network infrastructure such as
firewalls, proxies or load-balancers are correctly configured
(i.e., 4 in Fig. 1).

Some of the common issues discussed within the context
of test automation [21] are also affecting SoSRT. Specifically,
the costs of writing and maintaining regression tests increases



in the same way as the test objectives move from unit to end-
to-end. As a consequence, testers remain largely responsible
of properly identifying, selecting, and possibly combining
regression test cases in order to assess if an SoS keeps working
correctly even after changes have been introduced either in its
constituent systems or its environment.

The approach for governing SoSRT introduced in Fig. 1 is
grounded on the orchestrated execution of several testing mod-
ules yielding different granularity and focusing on different
objectives. Its overall intent is to increase the quality, and the
reusability of regression tests leveraging a test orchestration
strategy enabling the creation of complex regression test suites
as the composition of simple testing bundles. The specification
of policies for structuring relations among test cases, as well
as the set-up of policies governing their aggregation can be
used by the members of the QA Team as the basis for driving
regression testing activities and for supporting the root-cause
analysis of spotted errors/issues. In detail, the proposed gov-
ernance framework of regression testing in SoSs is structured
around five main aspects:

• Dependency Graphs: Identify the dependencies among
the available regression test cases. Dependencies could
be established among test cases targeting the same testing
objective or not;

• Orchestration Graphs: For each specific objective that
has to be achieved, plan and declare flows of test case
executions by taking into account the relations emerging
from the dependency graphs;

• Monitoring Rules: Establish policies on the information,
e.g., related to evolution, that should be notified by the
constituents, and the criteria enabling the selection of
some orchestration graph;

• Tests Orchestration: Launch the regression testing activi-
ties according to the statements in the orchestration graph:
dynamically decide which is the next regression test case
to execute. Report the outcomes to the QA Team;

• Feedback: Analyze the results of the testing session; in
case of regressions in the SoS or in any of its constituent,
plan and enforce a strategy for recovering.

In detail, the first aspect concerns building a dependency
graph on top of the regression test suites available at any
level. Dependencies among two regression test cases could
be defined due to an explicit managerial assertion, but also
by means of the formulation of a set of dependency criteria
driving some (semi-)automatic classification procedure. For
example a dependency between two regression integration test
cases I1, and I2 (i.e., see 2 in Fig. 1) could be established if
the constituents referred by I1 are a subset of the ones referred
by I2 or vice-versa; similarly I1 could be marked with a depen-
dency from all those regression test cases at sub-system level
(i.e., see 1 in Fig. 1) directly targeting any of the constituents
referred by I1 itself. In this last example, the rationale is that if
any regression in communications is revealed by I1, it could be
meaningful to check if any regression occurred also at the level
of those sub-systems involved in the communication. Similar

criteria can be established by considering regression test cases
about contracts or at end-to-end level.

The resulting dependencies among the regression test suites
are the basis for constructing a set of orchestration graphs
describing the (sequential or parallel) flows according to the
regression test case that should be combined and launched
against the SoS. It is important to clarify the term “test
orchestration” refers to a concept that is different from both
“test selection”, and “test prioritization”. Indeed test selection
is typically an off-line activity that consists in choosing which
are the more appropriate tests to execute. The selection could
be driven by some software artifacts or models describing the
SoS; it can also take into account some selection criteria (e.g.,
module coverage). Test prioritization can be seen as sorting
activity on the tests (i.e., what to test first), which may have
been previously selected. Test orchestration can be considered
a superset of both: once a test case has been executed the
choice of the next one is decided on-line taking into account
either the observed test verdict (i.e. test passed or failed), or
the output data produced by its execution.

As detailed in [15], verdict-driven orchestration is helpful
in order to structure conditional chains of test cases executions
by reasoning on the logical combination of the observed out-
comes. In addition to such an aspect, data-driven orchestration
also enables the possibility to interconnect test cases: the
output data of each test can be used to feed the next test in the
execution chain. However, test cases suitable for data-driven
orchestration require more effort in the specification of the test
cases: tests need to be designed to be interconnected as they
should be composable. In general this requirement could be a
threat to regression testing of SoSs, as the tests are supposed
to bring models matching input/output values in addition to
the usual test verdict.

Aspects such as Dependency Graphs and Orchestration
Graphs concern off-line activities that are required during
the creation or the maintenance of a regression test suite.
The remaining aspects mainly refer to on-line activities. In
particular, the bulletin board system is in charge of collecting
the information exchanged by the constituents about their
status or evolution. As introduced earlier, the detail of such
information strongly depends on the specific instance of the
SoS and their nature could span from detailed log entries
at sub-system level up to managerial notification about the
SoS [22]. The framework also includes a dedicated monitoring
module which has the responsibility to dig such information
looking for hints that deserve the activation of a new regression
testing campaign (i.e., delta-monitoring in Fig. 1). The ways
information are matched could be both explicit (e.g., due to
the direct implementation of some managerial recommenda-
tions), or recognized by means of operative rules dynamically
instantiated starting from a combination of higher-level meta-
rules [23], [24]. When a change is detected, the delta-monitor
triggers the orchestrator to dynamically select and launch the
most appropriate regression testing strategy for the detected
changes. More specifically, the envisioned approach is that the
notification from the delta-monitor could enable the selection



of an entry point for one or more orchestration graphs as they
were structured by the initial steps.

As introduced in [15], currently there are several Domain-
specific Languages (DSL) that can be considered as technical
alternatives for a system-level implementation of the proposed
RTS Orchestrator. Among the others, an interesting solution
comes from the Jenkins Pipeline1. Such a DSL easily supports
sequencing and parallel execution of tests by including system-
level operations such as checking out the project’s source
control, reporting, deploying, etc.

Looking at the results of the regression tests dynamically se-
lected and launched by orchestrator, a QA Team (the approach
refers to both Collaborative and Acknowledged SoSs, thus it is
reasonable to assume such a team exists) can draw an outline
of the status of the considered SoS. In this sense the QA Team
can also inform the constituents about discovered regression
errors or potential leaks by pushing such information inside
the bulletin board system.

IV. CONCLUSIONS

Researchers investigated several approaches for checking
if an evolution of a software brings undesired errors or
side-effects. Nevertheless, the application of smart regression
testing techniques still appears to be under-considered in the
context of large-scale complex systems, and simpler retest-all
strategies are often preferred. These practices appear to be even
more frequent when the complexity of the regression test suite
grows, like in the context of SoSs. Among the many possible
explanations, we believe there is lack of structured methods
conceived for regression test suites that can evolve over time in
order to reflect SoS evolutions: by skipping redundant/obsolete
test cases, or focusing only on a limited part of the SoS.

In this paper an approach has been presented to structure
and automate the regression testing activities in Collaborative
and Acknowledged SoSs. The work starts from an analysis
of the objectives for each regression testing phase of SoSs;
then it defines a proposal for a governance framework based
on the concept of an orchestration graph. Specifically such a
graph describes flows of regression tests cases and provides an
executable abstraction for their automatic on-line composition.
Future research will address an assessment of the proposed
framework, and consideration of Virtual SoSs.

ACKNOWLEDGMENT

This paper has been partially supported by the Italian MIUR
PRIN 2015 Project: GAUSS, and partially by the European
Project H2020 731535: ElasTest

REFERENCES

[1] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering: The Journal of the International Council on Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[2] R. Abbott, “Open at the top; open at the bottom; and continually (but
slowly) evolving,” in Proc. of IEEE/SMC International Conference on
System of Systems Engineering, 2006, pp. 1–6.

1see at:https://jenkins.io/doc/book/pipeline/

[3] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, pp. 18:1–18:41, 2015.

[4] V. de Oliveira Neves, A. Bertolino, G. De Angelis, and L. Garces, “Do
we need new strategies for testing systems-of-systems?” in Proc. of
SESoS, 2018, pp. 29–32.

[5] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[6] M. J. Harrold and A. Orso, “Retesting software during development and
maintenance,” in Proc. of Frontiers of Software Maintenance, 2008, pp.
99–108.

[7] M. Jaffar-ur Rehman, F. Jabeen, A. Bertolino, and A. Polini, “Testing
software components for integration: a survey of issues and techniques,”
Software Testing, Verification and Reliability, vol. 17, no. 2, pp. 95–133,
2007.

[8] A. Bertolino, G. De Angelis, S. Kellomaki, and A. Polini, “Enhancing
service federation trustworthiness through online testing,” IEEE Com-
puter, vol. 45, no. 1, pp. 66–72, 2012.

[9] A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test minimiza-
tion,” in Proc. of ICSE, 2018, pp. 210–221.

[10] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective
regression test case selection: A systematic literature review,” ACM
Comput. Surv., vol. 50, no. 2, pp. 29:1–29:32, May 2017.

[11] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case
prioritization approaches in regression testing: A systematic literature
review,” Information and Software Technology, vol. 93, pp. 74 – 93,
2018.

[12] D. Paterson, J. Campos, R. Abreu, G. M. Kapfhammer, G. Fraser, and
P. McMinn, “An empirical study on the use of defect prediction for test
case prioritization,” in Proc. of ICST. IEEE, 2019, pp. 346–357.

[13] S. Souto and M. d’Amorim, “Time-space efficient regression testing for
configurable systems,” Journal of Systems and Software, vol. 137, pp.
733–746, 2018.

[14] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proc. of the 22nd International Symposium on Foundations of
Software Engineering, 2014, pp. 235–245.

[15] B. García, F. Lonetti, M. Gallego, B. Miranda, E. Jiménez, G. De
Angelis, C. E. Moreira, and E. Marchetti, “A proposal to orchestrate
test cases,” in Proc. of QUATIC, 2018, pp. 38–46.

[16] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini, “Model-based
Generation of Testbeds for Web Services,” in Proc. of the 20th IFIP
Int. Conference on Testing of Communicating Systems (TESTCOM), ser.
LNCS, vol. 5047. Springer, 2008, pp. 266–282.

[17] L. Frantzen and J. Tretmans, “Model-based testing of environmental
conformance of components,” in Proc. of the 5th Int. Symposium
on Formal Methods for Components and Objects (FMCO) – Revised
Lectures, ser. LNCS, vol. 4709. Springer, 2006, pp. 1–25.

[18] D. Brahneborg, W. Afzal, and A. Čauševič, “A pragmatic perspective on
regression testing challenges,” in Proc. of Int. Conference on Software
Quality, Reliability and Security Companion, 2017, pp. 618–619.

[19] N. B. Ali, K. Petersen, and M. V. Mäntylä, “Testing highly complex
system of systems: an industrial case study,” in Proc. of the ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, 2012, pp. 211–220.

[20] J. Dahmann, J. A. Lane, G. Rebovich, and R. Lowry, “Systems of
systems test and evaluation challenges,” in Proc. of 5th International
Conference on System of Systems Engineering, 2010, pp. 1–6.

[21] D. Spinellis, “State-of-the-art software testing,” IEEE Software, vol. 34,
no. 5, pp. 4–6, 2017.

[22] A. Ben Hamida, A. Bertolino, A. Calabrò, G. De Angelis, N. Lago,
and J. Lesbegueries, “Monitoring service choreographies from multiple
sources,” in Proc. of the 4th Int. Workshop on Sw Engineering for
Resilient Systems, ser. LNCS, vol. 7527. Springer, 2012, pp. 134–149.

[23] A. Bertolino, A. Calabrò, and G. De Angelis, “A Generative Approach
for the Adaptive Monitoring of SLA in Service Choreographies,” in
Proc. of the 13th International Conference on Web Engineering, ser.
Lecture Notes in Computer Science, vol. 7977. Springer, 2013.

[24] ——, “Adaptive SLA Monitoring of Service Choreographies Enacted
on the Cloud,” in Proc. of the 7th Int. Symposium on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems, 2013, pp.
92–101.

https://jenkins.io/doc/book/pipeline/

	Introduction
	Regression Testing in SoSs
	Approach proposal
	Conclusions
	References

