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In this paper, we propose a model and solution approach for a multi-item inventory problem without shortages. The proposed
model is formulated as a fractional multi-objective optimisation problem along with three constraints: budget constraint, space
constraint and budgetary constraint on ordering cost of each item. The proposed inventory model becomes a multiple criteria
decision-making (MCDM) problem in fuzzy environment. This model is solved by multi-objective fuzzy goal programming
(MOFGP) approach. A numerical example is given to illustrate the proposed model.

Keywords: inventory model; membership function; goal programming; multi-objective optimisation; fractional programming

1. Introduction

Charnes and Cooper (1962) published their classical pa-
per in which they show that a linear fractional programme
with one ratio can be reduced to a linear programme us-
ing a nonlinear variable transformation. Brief definitions of
Multi-Objective Linear Fractional Programming (MOLFP)
problem and Fuzzy Linear Programming (FLP) are pre-
sented in Appendix. Zimmermann (1976) first extended
the FLP approach to a conventional multi-objective linear
programming (MOLP) problem. For each of the objective
functions in this problem, the DM was assumed to have a
fuzzy goal, such as ‘the objective function should be sub-
stantially less than or equal to some value’. Later, Zimmer-
mann (1978) described the fuzzy programming and linear
programming with several objective functions. The study of
fractional programmes with only one ratio has largely dom-
inated the literature in this field until about 1980. Kornbluth
and Steuer (1981) proposed the goal programming with lin-
ear fractional criteria. Luhandjula (1984) tried to apply the
variable transformation to solve the MOLFP problem. Since
then two other monographs solely devoted to fractional
programming appeared, one authored by Craven (1988).
Membership functions, such as linear, piecewise linear, ex-
ponential and hyperbolic functions, were used in different
analysis. In general, the non-increasing and non-decreasing
linear membership functions are frequently applied for the
inequalities with less than or equal to and greater than or
equal to relationships, respectively.

Dutta, Tiwari, and Rao (1992) developed a set theo-
retic approach to solve a multiple objective linear frac-
tional programming. Furthermore, Dutta, Tiwari, and Rao

∗
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(1993a) commented over the fuzzy approaches for multiple
criteria linear fractional optimisation. Subsequently, Dutta,
Tiwari, and Rao (1993b) studied the effect of tolerance
in fuzzy linear fractional programming. A Goal Program-
ming Method for Solving Fractional Programming Prob-
lems via Dynamic Programming was proposed by Pal and
Basu (1995). At the same time, Barros and Frenk (1995)
studied the generalised fractional programming and cutting
plane algorithms. Hariri and Abou-El-Ata (1997) proposed
a multi-item production lot-size inventory model with vary-
ing order cost under a restriction. Geometric programming
approach was applied to solve this inventory model.

Some researchers considered multi-objective approach
to supply chain management. Sabri and Beamon (2000)
proposed a multi-objective approach to simultaneous strate-
gic and operational planning in supply chain design. Later,
Maulik, Pal, and Moitra (2003) developed a goal program-
ming procedure for fuzzy MOLFP problem. At the same
time, Fung, Tang, and Wang (2003) published a paper on
multi-product aggregate production planning with fuzzy
demands and fuzzy capacities.

Rafiei, Mohammadi, and Torabi (2013) presented a
multi-segment multi-product multi-period supply chain net-
work design model, which minimises the expected cost.
They proposed an algorithm based on genetic algorithm
(GA)-priority to solve this model. Moreover, Ramana, Rao,
and Kumar (2013) developed a generic hierarchy model for
decision-makers who can prioritise the supply chain metrics
under performance dimensions of leagile supply chain.

Different models arise naturally in decision-making
when several rates are to be optimised simultaneously and

C© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

- 
W

ar
an

ga
l]

 a
t 2

3:
30

 0
3 

M
ay

 2
01

5 

http://dx.doi.org/10.1080/00207721.2013.860639
mailto:pavankmaths@gmail.com
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a compromise is sought which optimises a weighted sum
of these rates. In light of the applications of single-ratio
fractional programming numerators and denominators may
be representing output, input, profit, cost, capital, risk or
time, for example. A multitude of applications of the sum-
of-ratios problem can be found in this way. Included is the
case where some of the ratios are not proper quotients. This
describes situations where a compromise is sought between
absolute and relative terms like profit and return on invest-
ment (profit/capital) or return and return/risk, for example.
A fuzzy approach to solve a multi-objective linear frac-
tional inventory model was used by Sadjadi, Aryanezhad,
and Sarfaraj (2005). They considered two goals as fractional
under two constraints: space capacity constraint and bud-
get constraint. Their aim was simultaneously to maximise
the profit ratio to holding cost and to minimise the back
orders ratio to total ordered quantities. Chen (2005) used
fractional programming approach to stochastic inventory
problems. Some applications of MOLFP in inventory were
proposed by Toksarı (2008). An application of fuzzy goal
programming approach with different importance and pri-
orities to aggregate production planning was introduced by
Belmokaddem, Mekidiche, and Sahed (2009). They made
an attempt to minimise total production and work force
costs, inventory carrying costs and rates of changes in work
force.

Very recently, Dutta and Kumar (2012) proposed a
goal programming approach using trapezoidal membership
function for fuzzy multi-objective linear fractional optimi-
sation. Multi-objective optimisation models were proposed
by several researches in fuzzy environment as well as in
stochastic environment. Most of researchers assume that
the product quality is perfect. However, practically, it can
often be observed that the product quality is not always
perfect.

Gani and Maheswari (2013) presented a model on in-
spection cost and imperfect quality items with multiple
imprecise goals in supply chains in an uncertain envi-
ronment. Chakraborty and Chatterjee (2013) considered
the material selection problem as multi-criteria decision-
making (MCDM). They solved five material selection
problems by using different MCDM techniques. Finally,
they observed that choices of the best suited materials
solely depend on the criterion having the maximum priority
value.

Chakrabortty and Hasin (2013) attempted to solve an
aggregate production planning problem by fuzzy-based
genetic algorithm (FBGA) approach. Sadi-Nezhad and
Shahnazari-Shahrezaei (2013) investigated the ranking
fuzzy numbers using the concept of preference ration. They
introduced the weakness of this method. Then, they pro-
posed a new approach based on the concept of utility func-
tion which takes the opinion of decision-maker (DM) for
ranking fuzzy numbers into account.

This paper presents an application of fuzzy goal pro-
gramming approach to solve the multi-objective fractional
inventory model. Many realistic inventory problems deal
with more than one objective function which may be in
conflict with each other. Our model refers to a multi-item
inventory problem, with limited capacity of warehouse,
constraints on investment in inventory and budgetary con-
straint on ordering cost of each item. Our aim is to simul-
taneously maximise the profit ratio to backordered quan-
tity and to minimise the holding cost ratio to total ordered
quantities.

The paper is outlined as follows. The notations and as-
sumptions are defined in Section 2. The proposed inventory
model is presented in Section 3. In Section 4, we describe
the solution procedure. A numerical example is solved in
Section 5. In Section 6, we analyse the results. Finally, we
conclude in Section 7.

2. Notations and assumptions

2.1. Notations

In our proposed inventory model, we adopt the following
notations:

n = Number of items
k = Fixed cost per order
B = Maximum available budget for all items
F = Maximum available space for all items

For ith item: (i = 1, 2,. . . n), we define the following:

Qi = Ordering quantity of item i (a decision variable)
hi = Holding cost per item per unit time for ith item
Pi = Purchasing price of ith item
Si = Selling price of ith item
Di = Demand quantity per unit time of ith item
fi = Space required per unit for ith item

OCi = Ordering cost of ith item.

2.2. Assumptions

The following assumptions are being made in developing
the mathematical model:

(1) A multi-item inventory model is considered.
(2) Time horizon is infinite, and there is only one period

in the cycle time.
(3) Demand rate is constant over time for each item.
(4) Lead time is zero.
(5) Holding cost is known and constant for each item.
(6) Purchase price of the item is constant for each item,

i.e. no discount is available.
(7) Shortages are not allowed.
(8) No deterioration allowed.
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3. Proposed inventory model

A multi-item inventory system under resources constraints
is introduced as a linear fraction programme. This model
refers to a multi-item inventory problem, with limited
capacity of warehouse and constraints on investment in in-
ventories. For each item, we also imposed the constraint on
ordering cost. Demand for each item is known and constant
and it must be met over an infinite horizon without shortages
or backlogging. Replenishments are instantaneous and we
assume a zero lead time. In real life, we observe inventory
problems deal with more than one objective function. These
objectives may be in conflict with each other, or may not
be. In such type of inventory models, the decision-maker is
interested to maximise or minimise two or more objectives
simultaneously over a given set of decision variables. We
call this model inventory as linear fractional inventory
model.

We propose a multi-item inventory system with frac-
tional objective functions. Without loss of generality, we
assume there is only one period in the cycle time. Then

Profit =
n∑

i=1

(Si − Pi) Qi (1)

Holding cost =
n∑

i=1

hiQi

2
(2)

Ordering cost =
n∑

i=1

kDn

Qn

(3)

Back ordered quantity =
n∑

i=1

(Di − Qi) (4)

Total ordering quantity =
n∑

i=1

Qi. (5)

Constraints: We consider the following constraints in
this modelling formulation.

Upper limit of the total amount investment:

n∑
i=1

PiQi ≤ B. (6)

Limitation on the available warehouse floor space in the
store:

n∑
i=1

fiQi ≤ F . (7)

Budgetary constraints on ordering cost as follows.
For an effective inventory management, the control over

the ordering cost is also one of the priorities of the decision-
maker (DM). The low ordering cost plays an important role
to minimise the total inventory cost, and to optimise value

of ordering quantity. We are interested to impose the upper
limit of ordering cost as a constraint.

Since OC1, OC2, . . ., OCn are the ordering cost of first
item, second item,. . ., nth item, therefore, we can express
the concerned constrained as follows:

For first item
kD1

Q1
≤ OC1

⇒ kD1 − (OC1)Q1 ≤ 0
For second item kD2

Q2
≤ OC2

⇒ kD2 − (OC2)Q2 ≤ 0
Similarly, for nth item kDn

Qn
≤ OCn

⇒ kDn − (OCn)Qn ≤ 0.

(8)

For optimal policy of inventory, the decision-maker desires
to generate an optimal policy so that the profit can be max-
imised, and the holding cost can be minimised.

With the maximisation of profit, if the backordered
quantity is minimised, then this policy will be most pre-
ferred, and economical. Likewise, with the minimisation of
holding cost, the policy is such that the total order quantity
is optimised. So, it is practical and wise to consider the ob-
jective functions in the form of fractions and automatically
trade-offs between the above objectives will be considered.
Such objectives are called fractional objectives.

Hence, the multi-objective fractional programming
model is:

Maximise
Profit

Back ordered quantity

Minimise
Holding cost

Ordering quantity
Subject to Total Amount Investment Constraint,

Warehouse Floor Space Constraint,
and Budgetary Constraints on Ordering Cost

of each item.

Mathematically, we can rewrite above optimisation problem
as follows:

Maximise Z1=
∑n

i=1 (Si − Pi) Qi∑n
i=1 (Di − Qi)

(9)

Minimise Z2 =
∑n

i=1
hiQi

2∑n
i=1 Qi

(10)

Subject to
n∑

i=1

PiQi ≤ B, (11)

n∑
i=1

fiQi ≤ F, (12)

kDn − (OCn)Qn ≤ 0 (for each n), (13)

and all Qn ≥ 0, OCn > 0. (14)
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2272 D. Dutta and P. Kumar

Obviously, this model is multi-objective linear frac-
tional programming problem (MOLFPP), which can be
easily solved by using fuzzy goal programming (FGP) ap-
proach.

4. Solution procedure

4.1. Fuzzy goal programming (FGP) approach

In our approach, first the objectives are transformed into
fuzzy goals by means of assigning an aspiration level to
each of them. Then achievement of the highest membership
value (unity) to the extent possible of each of the fuzzy goals
is considered.

Let be the aspiration level assigned to the kth objective
(X). Then, the fuzzy goals appear as:

Zk(X)�gk(for maximising Zk(X)), (15)

and Zk(X)�gk(for minimising Zk(X)), (16)

where �, � indicate the fuzziness of the aspiration levels,
and are to be understood as ‘essentially more than’ and ‘es-
sentially less than’ in the sense of Zimmermann [2]. Hence,
the Fuzzy Linear Fractional Goal Programming (FLFGP)
can be stated as follows:

Find X

Satisfying Zk(X) � gk, k = 1, 2, . . . , k1 (17)

Zk(X) � gk, k = k1 + 1, . . . , K (18)

Subject to AX ≤,=, or ≥ b, X ≥ 0. (19)

Now, in case of fuzzy programming, the fuzzy goals are
characterised by their associated membership functions. For
kth fuzzy goal Zk(X) � gk , the membership function μk can
be written as:

μk (X) =

⎧⎪⎨
⎪⎩

1
Zk (X)−lk

gk−lk

0

if Zk ≥ gk

if lk ≥ Zk(X) ≤ gk

if Zk(X) ≤ lk

. (20)

Also, for kth fuzzy goal Zk(X) W gk , the membership
functionμk is:

μk (X) =

⎧⎪⎨
⎪⎩

1
uk−Zk (X)

uk−hk

0

if Zk(X) ≤ gk

if hk ≤ Zk(X) ≤ uk

if Zk(X) ≥ uk

, (21)

where uk is the upper tolerance limit, and lk ≤ gk ≤ hk ≤
uk = real numbers.

In fuzzy programming, the highest degree of member-
ship function is 1. Hence, for the above-defined membership
functions, the flexible membership goals with the aspiration
level 1 can be written as:

Zk (X) − lk

gk − lk
+ d−

k − d+
k = 1, (22)

and
uk − Zk (X)

uk − hk

+ d−
k − d+

k = 1, (23)

where d−
k (≥ 0) and d+

k (≥ 0) with d−
k d+

k = 0 are the under-
deviation and over-deviation, respectively, from the aspira-
tion levels. We see that the membership goals in Equations
(22) and (23) are inherently nonlinear in nature and this may
create computational difficulties in the solution process. To
avoid such problems, the linearisation of membership goals
must be done. So, we express the kth membership goal in
Equation (22) as follows:

LkZk (X) − Lklk + d−
k − d+

k = 1, where Lk = 1

gk − lk
,

⇒ LkZk (X) + d−
k − d+

k = 1 + Lklk,

⇒ Lk (ckX + αk) + d−
k (dkX + βk) − d+

k (dkX + βk)

= L
′
k (dkX+βk) ; byEquation (1) and letting L

′
k=1 + Lklk,

⇒ CkX + d−
k (dkX + βk) − d+

k (dkX + βk) = Gk, (24)

where Ck = Lkck − L
′
kdk and Gk = L

′
kβk − Lkβk. (25)

Similar goal expressions for the membership goal in Equa-
tion (23) can also be obtained. Now, using the method of
variable change, the goal expression in Equation (24) can
be linearised as follows.

Taking D−
k = d−

k (dkX + βk) and D+
k = d+

k

(dkX + βk), the linear form of the expression in Equation
(24) is obtained as

CkX + D−
k − D+

k = Gk (26)

with D−
k , D+

k ≥ 0 and D−
k D+

k = 0 since d−
k , d+

k ≥ 0

and dkX + βk > 0. (27)

Now, to minimise d−
k means to minimise D−

k /(dkX +
βk) which is also a nonlinear expression. Also, when
a membership goal is fully achieved, d−

k = 0 and when
its achievement is zero, d−

k = 1 are found in the solu-
tion. So, to involve d−

k ≤ 1 in the solution, we need
to impose the following constraint to the model of the
problem:

D−
k /(dkX + βk) ≤ 1
⇒ −dkX + D−

k ≤ βk . (28)
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It may be noted that any such constraint corresponding
to does not arise in the model formulation. Now, if the
simplest version of GP is introduced to formulate the model
of the problem under consideration, then the GP model
formulation becomes:

Find X so as to

Minimise Z =
K∑

k=1
w−

k D−
k

Satisfying CkX + D−
k − D+

k = Gk

Subject to AX ≥ b

−dkX + D−
k ≤ βk,

X ≥ 0, D−
k ,D+

k ≥ 0 for k = 1, 2, . . . , K

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,
(29)

where Z is the fuzzy achievement function consisting of
the weighted under-deviational variables, in which the nu-
merical weights w−

k (≥ 0), k = 1, 2, . . ., K are the relative
importance of achieving the aspiration levels of the respec-
tive fuzzy goals subject to the constraints set.

Now, for the relative importance of the fuzzy goals
properly, the weighting scheme can be used to assign the
values to w−

k (k = 1, 2, . . ., K). In our formulation, w−
k can

be determined as

w−
k =

⎧⎪⎨
⎪⎩

1

gk − lk
, for maximisation fuzzy goal

1

uk − hk

, for minimisation fuzzy goal
. (30)

The mathematical programming problem in Equation (29)
can be solved by using min–sum method. The final goal
expression is:

CkX + D−
k − D+

k = Gk, (31)

which is actually the linearised form of the original goal
expression

Lk (ckX + αk) +d−
k (dkX + βk) − d+

k (dkX + βk)

= L
′
k (dkX + βk)

⇒ Lk

(ckX + αk)

(dkX + βk)
+d−

k − d+
k = L

′
k, (32)

where Lk = 1/ (gk − lk) , L′
k = 1 + Lklk , and where

(gk − lk) denotes the admissible violation constant.

Its generalised fractional form is given by

Zk (X) + (gk − lk) d−
k − (gk − lk) d+

k = gk. (33)

Now, the conventional form of a goal in GP is

Zk (X) + nk − pk = bk, (34)

where Zk (X) may be linear/nonlinear including fractional,
where nk and pk represent the under and over-deviational
variables, respectively. Comparing the above two forms of
goals, we find that

nk = (gk − lk) d−
k , which gives d−

k = nk/ (gk − lk) . (35)

Now, due to the minimising the weighted goal devia-
tional variables in GP, we observe that the GP formu-
lations for the two forms of goals are equivalent with
d−

k = nk/ (gk − lk). Thus, the weights of the goals in the
proposed model are reciprocal to the admissible violation
constants.

5. Numerical example

We consider a three item inventory problem. All in-
put parameter values are given in Table 1. Using
this data, the multi-objective inventory problem can be
expressed as:

Maximise Z1 =
∑3

i=1 (Si − Pi) Qi∑3
i=1 (Di − Qi)

= 25Q1 + 20Q2 + 10Q3

4500 − Q1 − Q2 − Q3
(36)

Minimise Z2 =
∑3

i=1
hiQi

2∑3
i=1 Qi

= 6Q1 + 8Q2 + 9Q3

Q1 + Q2 + Q3
(37)

Subject to 625Q1+730Q2 + 440Q3 ≤ 900000, (38)

2Q1 + 4Q2 + 2Q3 ≤ 13000, (39)

7(1000) − 320Q1 ≤ 0 (40)

7(2000) − 350Q2 ≤ 0 (41)

Table 1. Input data for three-item inventory problem.

Holding cost Purchasing Selling Demand Ordering cost Space required Maximum Maximum
per item per price, price, quantity, per order, for item, Fixed cost available inventory

Item year, hi (Rs.) Pi (Rs.) Si (Rs.) Di (units/year) QCi (Rs.) fi (sq. metre) per order, k space, F (sq. metre) budget, B (Rs.)

i = 1 12 625 650 1000 320 2 7 13,000 900,000 (nine lacs)
i = 2 16 730 750 2000 350 4
i = 3 18 440 450 1500 250 2
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2274 D. Dutta and P. Kumar

7(1500) − 250Q3 ≤ 0 (42)

all Qi ≥ 0, i = 1, 2, 3. (43)

We find the individual best solution: Z1 ≡ 11.56 at
(1363.71, 40, 42) and Z2 ≡ 6.14 at (1363.71, 40, 42). Let
the fuzzy aspiration levels of the two objectives be gZ1 = 13
and gZ2 = 5, respectively. Then the problem can be de-
signed as:

Find Q (Q1,Q2,Q3) so as to satisfy the following two
fuzzy goals:

Z1 = 25Q1 + 20Q2 + 10Q3

4500 − Q1 − Q2 − Q3
� 13 (44)

Z2 = 6Q1 + 8Q2 + 9Q3

Q1 + Q2 + Q3
� 5. (45)

Subject to constraints (38)–(43).
For the fuzzy goal Z1 � 13, let the lower tolerance limit

be lz1 = 8. For the fuzzy goal Z2 � 5, let the upper tolerance
limit be uz2= 10, as shown in Figures 1 and 2.

Figure 1. Membership function of Z1. (Maximisation type).

Figure 2. Membership function of Z1. (Minimisation type).

Analytically, the linear membership functions are de-
fined as follows:

For Z1 � 13,

μZ1 = Z1 (Q) − lZ1

gZ1 − lZ1

, when lZ1 ≤ Z1 (Q) ≤ gZ1

=
25Q1+20Q2+10Q3

4500−Q1−Q2−Q3
− 8

13 − 8
,

when 8 ≤ Z1 (Q) ≤ 13

= 33Q1 + 28Q2 + 18Q3 − 36000

5 (4500 − Q1 − Q2 − Q3)
, (46)

and for Z2 � 5,

μZ2 = uZ2 − Z2 (Q)

uZ2 − gZ2

, when gZ2 ≤ Z2 (Q) ≤ uZ2

=
10 − 6Q1+8Q2+9Q3

Q1+Q2+Q3

10 − 5
, when 5 ≤ Z2 (Q) ≤ 10

= 4Q1 + 2Q2 + Q3

5 (Q1 + Q2 + Q3)
. (47)

Then the membership goals can be expressed as

33Q1 + 28Q2 + 18Q3 − 36000

5 (4500 − Q1 − Q2 − Q3)
+d−

1 − d+
1 = 1 (48)

4Q1 + 2Q2 + Q3

5 (Q1 + Q2 + Q3)
+ d−

2 − d+
2 = 1, (49)

where d−
i , d+

i ≥ 0, d−
1 ≤ 1, d−

2 ≤ 1 and

d−
i d+

i = 0 for all i = 1, 2. (50)

From Equations (48) and (49), we obtain

38Q1 + 33Q2 + 23Q3 + D−
1 − D+

1 = 58500 (51)

− Q1 − 3Q2 − 4Q3 + D−
2 − D+

2 = 0 (52)

where D−
1 = 5d−

1 (4500 − Q1 − Q2 − Q3), (53)

D+
1 = 5d+

1 (4500 − Q1 − Q2 − Q3), (54)

D−
2 = 5d−

2 (Q1 + Q2 + Q3), (55)

and D+
2 = 5d+

2 (Q1 + Q2 + Q3). (56)

Now, from the restrictions d−
1 ≤ 1 and d−

2 ≤ 1, we obtain

D−
1

5 (4500 − Q1 − Q2 − Q3)
≤ 1, and

D−
2

5(Q1+Q2+Q3)
≤ 1

⇒ D−
1 +5Q1+5Q2 + 5Q3 ≤ 22500, and

D−
2 − 5Q1 − 5Q2 − 5Q3 ≤ 0. (57)
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Thus the equivalent GP formulation is obtained as:
Find Q (Q1,Q2,Q3) so as to

Minimise
1

5
D−

1 + 1

5
D−

2 (58)

Subject to 38Q1 + 33Q2 + 23Q3+D−
1 − D+

1 = 58500,

−Q1 − 3Q2 − 4Q3+D−
2 − D+

2 = 0,

D−
1 + 5Q1 + 5Q2 + 5Q3 ≤ 22500,

D−
2 − 5Q1 − 5Q2 − 5Q3 ≤ 0,

625Q1 + 730Q2 + 440Q3 ≤ 900000,

2Q1 + 4Q2 + 2Q3 ≤ 13000,

7(1000) − 320Q1 ≤ 0,

7(2000) − 350Q2 ≤ 0,

7(1500) − 250Q3 ≤ 0,

and Q1,Q2,Q3 ≥ 0,D−
i , D+

i ≥ 0
for all i = 1, 2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(59)

The LINGO computer software package is operated to
run the linear programming model. The optimal solution
is obtained as: Q1 = 1363.712, Q2 = 40, Q3 = 42. The
achieved objective function values are Z1 = 11.5617, Z2 =

6.1424. The resulting membership values are μz1 = 0.7123,
μz2 = 0.7715. The optimal results obtained for the different
values of demand quantity are shown in Table 2–4.

6. Analysis of results

From above Table 2–4, we observe the following points:

(1) The optimal order quantity is Q1 = 1363.712 units,
Q2 = 40, Q3 = 42 and achieved objective func-
tion values are Z1 = 11.5617, Z2 = 6.1424. The
resulting membership values are: μz1 = 0.7123,
μz2 = 0.7715. This means the resulting achieve-
ment degrees for the two fuzzy goals are achieved
up to the level of 71.23%, and 77.15% respectively,
all of which satisfy the requirements of decision-
makers.

(2) The maximum achievement degrees for the two
fuzzy goals are 0.7145 and 0.7732 corresponding to
the demand values (900, 1900, 1400), as displayed
in Table 2.

Table 2. Optimal solution for different values of demand quantity.

Resulting achievement
degrees for two

Demand quantity Optimal solution fuzzy goals

S. no. (D1, D2,D3) Q1 Q2 Q3 Z1 Z2 μz1 μz2

1 (600, 1600, 1100) 1082.516 32.0 30.8 8.3497 6.1365 0.0699 0.7727
2 (700, 1700, 1200) 1181.716 34.0 33.60 9.4007 6.1351 0.2801 0.7729
3 (800, 1800, 1300) 1280.916 36.0 36.40 10.5212 6.1338 0.5042 0.7732
4 (900, 1900, 1400) 1368.019 38.0 39.20 11.5728 6.1339 0.7145 0.7732
5 (1000, 2000, 1500) 1363.712 40.0 42.0 11.5617 6.1424 0.7123 0.7715
6 (1100, 2100, 1600) 1359.405 42.0 44.80 11.5506 6.1510 0.7101 0.7698
7 (1200, 2200, 1700) 1355.098 44.0 47.60 11.5395 6.1595 0.7079 0.7681
8 (1300, 2300, 1800) 1350.790 46.0 50.40 11.5283 6.1680 0.7056 0.7664
9 (1400, 2400, 1900) 1346.483 48.0 53.2 11.5172 6.1765 0.7034 0.7647

10 (1500, 2500, 2000) No feasible solution found

Table 3. Optimal solution for different values of purchasing price.

Resulting achievement
degrees for two

Purchasing price Optimal solution fuzzy goals

S. no. (P1, P2, P3) Q1 Q2 Q3 Z1 Z2 μz1 μz2

1 (600, 200, 200) 21.8750 81.8399 42.0 13.0001 7.9831 1.000 0.4033� �
2 (600, 705, 415) 859.7460 40.0 42.0 13.000 6.2187 1.000 0.7562
3 (605, 710, 420) 940.9310 40.0 42.0 13.000 6.2013 1.000 0.7597
4 (610, 715, 425) 1037.434 40.0 42.0 13.000 6.1840 1.000 0.7632
5 (615, 720, 430) 1154.042 40.0 42.0 13.000 6.1666 1.000 0.7666
6 (620, 725, 435) 1297.767 40.0 42.0 13.000 6.1493 0.9999 0.7701
7 (625, 730, 440) 1363.712 40.0 42.0 11.5617 6.1424 0.7123 0.7715
8 (630, 735, 445) 1352.238 40.0 42.0 9.0857 6.1436 0.2171 0.7712
9 (635, 740, 450) No feasible solution found
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Table 4. Optimal solution obtained for different values of selling price.

Resulting achievement
degrees for two

Selling price Optimal solution fuzzy goals

S. no. (S1, S2, S3) Q1 Q2 Q3 Z1 Z2 μz1 μz2

1 (640, 740, 440) No feasible solution found
2 (645, 745, 445) 1363.712 40.0 42.0 9.1950 6.1424 0.2390 0.7715
3 (650, 750, 450) 1363.712 40.0 42.0 11.5617 6.1424 0.7723 0.7715
4 (655, 755, 455) 1297.767 40.0 42.0 13.000 6.1493 1.000 0.7701
5 (660, 760, 460) 1154.042 40.0 42.0 13.000 6.1666 1.000 0.7666
6 (665, 765, 465) 1037.434 40.0 42.0 13.000 6.1840 1.000 0.7632
7 (670, 770, 470) 940.9310 40.0 42.0 13.000 6.2046 1.000 0.7590
8 (675, 775, 475) 859.7460 40.0 42.0 13.000 6.2187 1.000 0.7562
9 (680, 780, 480) 790.5000 40.0 42.0 13.000 6.2361 1.000 0.7527

10 (685, 785, 485) 730.7397 40.0 42.0 13.000 6.2534 1.000 0.7493� �
11 (1085, 1185, 885) 43.4334 40.0 42.0 12.6326 7.6423 0.9265 0.4715
12 (1185, 1285, 985) 21.8750 40.0 42.0 12.8592 7.9831 0.9718 0.4033

(3) In Table 3, the maximum achievement degrees for
the two fuzzy goals are 1.0 and 0.7715, which
corresponding to different set of purchasing price
values.

(4) In Table 4, the maximum achievement degrees for
the two fuzzy goals are 1.0 and 0.7715, which
corresponding to different set of selling price
values.

(5) Using fuzzy goal programming approach to simul-
taneously optimise two objectives, yields optimal
order quantity over a wide range of demand val-
ues. The demand variation, up to a finite lower and
upper limits, gives the global optimal and feasible
results. Beyond these limits, the solution becomes
non-optimal and infeasible. This is because of the
model assumptions. In both examples, the demand
quantity values vary but the selling price and pur-
chasing price do not vary. If we impose another as-
sumption: dependency of demand quantity values
with selling price and the purchasing price, then the
global optimal results will be obtained over a wide
range of variation in demand quantity values. Then,
the model may be more realistic.

The proposed model is solved by using LINGO com-
puter package and getting optimal order quantity plan. The
proposed model gives an efficient compromise solution
and the overall levels of decision-making (DM) satisfac-
tion with the multiple fuzzy goal values.

7. Conclusion

In this paper, we proposed an application of a fuzzy
goal programming approach with trapezoidal fuzzy number
developed by us (Dutta & Kumar, 2012) to multi-objective

linear fractional inventory problem in a simple way. The
proposed approach attempts simultaneously to maximise
the profit ratio to backordered quantity and to minimise
the holding cost ratio to total ordered quantities, so that in
the end, the proposed model is solved by using LINGO pro-
gramme to get optimal order quantities. This model gives
optimal results over a wide range of demand values. How-
ever, the major limitations of the proposed model concern
the assumptions made in determining each of the decision
parameters, with reference to forecasted demand, selling
price and purchasing.
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Appendix

Lets us first define MOLFP and FLP:

Definition 1: The general form of an MOLFP problem is

Optimise : Zk (X) = ckX + αk

dkX + βk

, k = 1, 2, . . . , K. (A1)

Subject to:

X ∈ S = {
X ∈ Rn|AX ≤,=, or ≥ b, X ≥ 0, b ∈ Rm

}
,

(A2)

where ck, dk ∈ Rn; αk, βk are constants, and S 
= �. (A3)

Without loss of generality, we set dkX + βk > 0, for all X ∈ S. In
MOLFPP, if we introduce a fuzzy aspiration level to each of the
objectives, then these fuzzy objectives are called as fuzzy goals.

In the conventional approach, value of the parameters of linear
programming models must be well-defined and precise. However,
in real world environment, this is not a realistic assumption. In the
real-life problems, there may exist uncertainty about the param-
eters. In such a situation the parameters of linear programming
problems may be represented as fuzzy numbers.

Definition 2: An FLP problem with m fuzzy equality constraints
and n fuzzy variables may be formulated as follows:

Max (or Min) (C̄T ⊗X̄), (A4)

Subject to Ā ⊗ X̄ = b̃, (A5)

X̄ is a non − negative fuzzy number, (A6)
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where C̃T = [
c̄j

]
1×n

, X̃ = [
X̄j

]
n×1

, Ã = [aij ]m×n, b̄ = b̄i]m×1

and āij , c̄j , x̄j , b̄i ∈ F (R) (A7)

where F(R) is the set of real fuzzy numbers. In various applica-
tions of nonlinear programming, a ratio of two functions is to be
maximised or minimised under certain number of constraints. In

other applications, the objective function involves more than one
ratio of functions. The problem of optimising one or several ratios
of functions is called a fractional programme. Generally, most of
the MOFP problems are first converted into single objective FP
problems and then solved. The decision-maker (DM) must simul-
taneously optimise these conflicting goals in a framework of fuzzy
aspiration levels.
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