Software Open Access

comprna/reorientexpress: first release

angelrure; Akanksha2511; Eduardo Eyras


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/5858cc0e-ffb4-4704-a157-330f88d234a5/comprna/reorientexpress-v1.0.0.zip"
      }, 
      "checksum": "md5:b80a7243038594df4136283963be4e81", 
      "bucket": "5858cc0e-ffb4-4704-a157-330f88d234a5", 
      "key": "comprna/reorientexpress-v1.0.0.zip", 
      "type": "zip", 
      "size": 78289193
    }
  ], 
  "owners": [
    81969
  ], 
  "doi": "10.5281/zenodo.3528433", 
  "stats": {
    "version_unique_downloads": 1.0, 
    "unique_views": 17.0, 
    "views": 22.0, 
    "version_views": 22.0, 
    "unique_downloads": 1.0, 
    "version_unique_views": 17.0, 
    "volume": 78289193.0, 
    "version_downloads": 1.0, 
    "downloads": 1.0, 
    "version_volume": 78289193.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3528433", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3528432", 
    "bucket": "https://zenodo.org/api/files/5858cc0e-ffb4-4704-a157-330f88d234a5", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3528432.svg", 
    "html": "https://zenodo.org/record/3528433", 
    "latest_html": "https://zenodo.org/record/3528433", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3528433.svg", 
    "latest": "https://zenodo.org/api/records/3528433"
  }, 
  "conceptdoi": "10.5281/zenodo.3528432", 
  "created": "2019-11-05T04:10:48.621044+00:00", 
  "updated": "2020-01-25T07:21:33.428355+00:00", 
  "conceptrecid": "3528432", 
  "revision": 4, 
  "id": 3528433, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3528433", 
    "description": "<p>This is the first release of ReorientExpress,&nbsp;a program to create, test and apply models to predict the 5&#39;-to-3&#39; orientation of long-reads from cDNA sequencing with Nanopore or PacBio using deep neural networks for samples without a genome or a transcriptome reference.&nbsp;ReorientExpress implements two Deep Neural Network models: a Multi-Layer Perceptron (MLP) and a Convolutional Neural Network (CNN), and it uses as training input a transcriptome annotation from any species or any other fasta/fasq file of RNA/cDNA sequences for which the orientation is known. Training or testing data can thus be experimental data, annotation data or also mapped reads (providing the corresponding PAF file).</p>", 
    "license": {
      "id": "other-open"
    }, 
    "title": "comprna/reorientexpress: first release", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3528432"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3528433"
          }
        }
      ]
    }, 
    "version": "v1.0.0", 
    "publication_date": "2019-11-05", 
    "creators": [
      {
        "name": "angelrure"
      }, 
      {
        "name": "Akanksha2511"
      }, 
      {
        "affiliation": "ICREA / IMIM / EMBL", 
        "name": "Eduardo Eyras"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://github.com/comprna/reorientexpress/tree/v1.0.0", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3528432", 
        "relation": "isVersionOf"
      }
    ]
  }
}
22
1
views
downloads
All versions This version
Views 2222
Downloads 11
Data volume 78.3 MB78.3 MB
Unique views 1717
Unique downloads 11

Share

Cite as