Preprint Open Access

Specification of a Software Architecture for an Industry 4.0 Environment

Kavakli, Evangelia; Buenabad-Chavez, Jorge; Tountopoulos, Vassillis; Loucopoulos, Pericles; Sakellariou, Rizos


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3528270</identifier>
  <creators>
    <creator>
      <creatorName>Kavakli, Evangelia</creatorName>
      <givenName>Evangelia</givenName>
      <familyName>Kavakli</familyName>
      <affiliation>School of Computer Science, The University of Manchester, Manchester, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Buenabad-Chavez, Jorge</creatorName>
      <givenName>Jorge</givenName>
      <familyName>Buenabad-Chavez</familyName>
      <affiliation>School of Computer Science, The University of Manchester, Manchester, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Tountopoulos, Vassillis</creatorName>
      <givenName>Vassillis</givenName>
      <familyName>Tountopoulos</familyName>
      <affiliation>Athens Technology Center S.A.</affiliation>
    </creator>
    <creator>
      <creatorName>Loucopoulos, Pericles</creatorName>
      <givenName>Pericles</givenName>
      <familyName>Loucopoulos</familyName>
      <affiliation>School of Computer Science, The University of Manchester, Manchester, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Sakellariou, Rizos</creatorName>
      <givenName>Rizos</givenName>
      <familyName>Sakellariou</familyName>
      <affiliation>School of Computer Science, The University of Manchester, Manchester, UK</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Specification of a Software Architecture for an Industry 4.0 Environment</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Smart manufacturing</subject>
    <subject>software architecture</subject>
    <subject>decision making</subject>
    <subject>Industry 4.0</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-10-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Preprint"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3528270</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3528269</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Data-driven decision making is at the core of Industry 4.0. This paper describes the specification of a conceptual architecture of a smart system for supporting decision making in the context of disruptive events in manufacturing operations. Following a viewpoint-oriented approach, the proposed architecture identifies the functional components that facilitate decision making and establishes the interfaces between them, demonstrates the information flow within the manufacturing ecosystem for vertical / horizontal integration and establishes the mapping of the functional components to different software containers, execution environments and physical devices.&lt;/p&gt;</description>
    <description descriptionType="Other">Preprint of a research paper accepted at the  6th International Conference on Enterprise Systems Limassol, Cyprus, 01-02 October, 2018</description>
  </descriptions>
</resource>
75
1,169
views
downloads
All versions This version
Views 7575
Downloads 1,1691,169
Data volume 1.4 GB1.4 GB
Unique views 7575
Unique downloads 1,1191,119

Share

Cite as