Preprint Open Access
Tountopoulos, Vasilios; Kavakli, Evangelia; Sakellariou, Rizos
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Tountopoulos, Vasilios</dc:creator> <dc:creator>Kavakli, Evangelia</dc:creator> <dc:creator>Sakellariou, Rizos</dc:creator> <dc:date>2018-10-02</dc:date> <dc:description>The orchestration of smart manufacturing service operations and processes arises as a challenging step in the realization of the Industry 4.0 vision. This paper presents the work in progress towards the specifications of a controlling environment for data-driven orchestration of software services in future smart manufacturing scenarios. The paper discusses the role and significance of multi-aspect data in the management of manufacturing operations and proposes a reference architecture for controlling the orchestration of the respective data services, following the work that has been conducted in the context of the EU-funded project DISRUPT.</dc:description> <dc:description>Preprint of a research paper accepted at the 6th International Conference on Enterprise Systems, Limassol, Cyprus / 01-02 October, 2018</dc:description> <dc:identifier>https://zenodo.org/record/3528256</dc:identifier> <dc:identifier>10.5281/zenodo.3528256</dc:identifier> <dc:identifier>oai:zenodo.org:3528256</dc:identifier> <dc:language>eng</dc:language> <dc:relation>info:eu-repo/grantAgreement/EC/H2020/723541/</dc:relation> <dc:relation>doi:10.5281/zenodo.3528255</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>Smart manufacturing, data-driven service orchestration, controller</dc:subject> <dc:title>Towards a Cloud-Based Controller for Data-Driven Service Orchestration in Smart Manufacturing</dc:title> <dc:type>info:eu-repo/semantics/preprint</dc:type> <dc:type>publication-preprint</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 57 | 57 |
Downloads | 228 | 228 |
Data volume | 85.8 MB | 85.8 MB |
Unique views | 56 | 56 |
Unique downloads | 219 | 219 |