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Abstract 

D-Flow Flexible Mesh (“D-Flow FM”) [1] is the hydrodynamic module of the Delft3D Flexible Mesh Suite [2]. 

Since for typical, real-life applications there is a need to make D-Flow FM more efficient and scalable for high 

performance computing, we profiled and analysed D-Flow FM for representative test cases. In the current paper, 

we discuss the conclusions of our profiling and analysis. We observed that, for specific models, D-Flow FM can 

be used for parallel simulations using up to a few hundred cores with good efficiency. It was however observed 

that D-Flow FM is MPI bound when scaled up. Therefore, for further improvement, we investigated two 

optimisation strategies described below. 

The parallelisation is based on mesh decomposition and the use of deep halo regions may lead to significant mesh 

imbalance. Therefore, we first investigated different partitioning and repartitioning strategies to improve the load 

balance and thus reduce the time spent waiting on MPI communications. We obtained small performance gains in 

some cases, but further investigations and broader changes in the numerical methods would be needed for this to 

be usable in a general case.  

As a second option we tried to use a communication-hiding conjugate gradient method, PETSc’s linear solver 

KSPPIPECG, to solve the linear system arising from the spatial discretisation, but we were not able to get any 

performance improvement or to reproduce the speedup published by the authors. The performance of this method 

turns out to be very architecture and compiler dependent, which prevents its use in a more general-purpose code 

like D-Flow FM. 
 

Introduction 
 

Delft3D [3] is used worldwide with a broad application range including the modelling of flooding, morphology 

and water quality, in coastal and estuarine areas, rivers and lakes, and from consultancy work to applied research. 

There are two different Delft3D versions: the Delft3D 4 Suite for structured computational meshes, and the newer 

Delft3D Flexible Mesh Suite [2] for unstructured computational meshes. D-Flow Flexible Mesh (“D-Flow FM”) 

[1] is the hydrodynamic module of the Delft3D Flexible Mesh Suite. For typical real-life applications, for instance 

for highly detailed modelling and operational forecasting, there is a need to make D-Flow FM more efficient and 

scalable for high performance computing.2 

This was the objective of a preparatory access type D project carried out by SURFsara, CINECA, and Deltares 

between 2017 and 2019. In particular, the goal was to bring the performances and scalabilities of the shallow water 

 

 
 
1 Corresponding author. E-mail address: maxime.moge@surfsara.nl 
2 The scalability of Delft3D-FLOW, the shallow water solver of the Delft3D 4 Suite, was studied before[4]. 
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and transport solvers in the Delft3D Flexible Mesh Suite [2] closer to those required for Tier-0 systems, with a 

focus on D-Flow FM. This PRACE White Paper contains the results of this project. 

In this paper, first the main computational methods of D-Flow FM are outlined. Then the selected test cases are 

described. The principal tasks of the work performed involved the scalability and performance analysis with these 

test cases. To further improve the observed scalability, based on the analysis, we identified the main bottlenecks 

and with this information several optimisation strategies were investigated. 

 

Computational Methods of D-Flow FM 
 

D-Flow FM solves the shallow-water equations [1] with the spatial discretisation being achieved by a staggered 

finite volume method on an unstructured mesh of cells of varying complexity (triangles to hexagons). After 

linearisation of the temporal discretisation, the resulting systems are solved with a semi-implicit method. This 

involves a linear system which is currently solved by a minimum degree algorithm to reduce system size and a 

preconditioned Krylov solver from PETSc [5]. Parallelisation is via domain decomposition with METIS [6] to 

distribute the computational work. At the interfaces between subdomains, halo regions are defined using degree 4 

neighbours for a proper representation of discretised stencils at the interfaces and communication between 

subdomains via MPI. 

 

Selection of Representative Test Cases 
 

For benchmarking and testing possible improvements of D-Flow-FM, model applications were selected based on 

those currently under development at Deltares and which also impose a computational challenge. These are as 

follows: 

– Schematic model of the Waal (“Waal_schematic”) with 9000000 cells and 9015601 nodes. This depth- 

averaged model with groins and part of the floodplain of the Waal, one of the main rivers in the Netherlands, 

is used to estimate the effect of lowering the groins on the water level when the area is flooded [7]. The 

relatively large number of grid cells and the rectangular shape make it a good test case to start with for 

investigating scalability. For the depth-averaged shallow water solver WAQUA [8] a good scaling up to at 

least 80 processors was observed with this model [9]. The model has also been used in a previous PRACE 

project [4] to investigate and improve scalability of the shallow water solver Delft3D-FLOW[2]. 

– Global Tide and Surge Model with 9584149 cells and 8911362 nodes (“GTSM”). The main goal of the depth 

averaged Global Tide and Surge Model [10], [11] is to zoom in from global to regional scale and to study the 

impact of various assumptions in regional models. The unstructured grid is made in such a way that it 

represents coastal areas in more detail than the open oceans: this is of importance as much of the tidal energy 

is dissipated on the shelf, even on a global scale. 

– North Sea models with 348842 cells and 353314 nodes for the depth averaged model (“North_Sea_2D”) and 

with 8721050 cells and 9186164 nodes for both the three-dimensional model (“North_Sea_3D”) and the three-

dimensional model with salinity and temperature (“North_Sea_3D_ST”). The overall objective of these 

models is to have advanced modelling capabilities for assessing long-term ecosystem changes in the North 

Sea. The three-dimensional D-Flow FM models [12] have the same horizontal unstructured grid as the depth 

averaged model but use 25 so-called sigma layers in the vertical direction leading to a higher computational 

load per horizontal cell. Furthermore, for “North_Sea_3D_ST” additional salinity and temperature processes 

are switched on in D-Flow FM with proper forcing and boundary conditions. For this, next to the shallow 

water equations, D-Flow FM uses advection diffusion equations. This leads to a higher computational 

complexity which is representative for other water quality processes. 

– Lake Marken model with 345184 cells and 175348 nodes (“Lake_Marken”). This model has been developed 

to enable an integrated approach in which the model can be used for different applications in the Lake Marken 

area [13], [14]. It contains a boundary fitted grid, with grid size depending on the location and smooth 

transitions in between. The key idea is to have enough resolution near the dikes (important for dike safety 

assessments and operational forecasting) and other important structures (for land reclamation for housing and 

natural islands) and a coarser resolution where possible in order to save computational time (important both 

for operational forecasting and water quality studies). 

– Rhine branches models with 108143 cells and 109300 nodes (“Waal_40m”) and with 1213410 cells and 

1220927 nodes (“Rijntakken_20m”).  The models have been developed for quantifying the cumulative effects 

of combined measures and to design optimal strategies [15], [16]. With these models measures are studied 

that counteract the effects of the bed level degradation that influence the morphology of the river bed, and 

therefore affect navigability. 
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Scalability and Performance Analysis 
 

We used D-Flow FM Version 1.2.1.62244 with the configurations described in Table 1.  

Table 1: Hardware and software used for the scalability and performance analysis 

System Cartesius MARCONI 

Partition Thin nodes and Fat nodes A2 (KNL) 

Architecture Intel Haswell and Sandy Bridge Intel KNL 

Interconnect Infiniband Intel Omni-Path 

Compiler Intel compiler 18.0.1 Intel compiler 18.0.5 

Optimization flags '-xAVX2 -O3' '-xHost -axMIC-AVX512 -O3' 

MPI implementation Intel MPI 2018.1.163 Intel MPI 2018.4.274 

 

On Cartesius we used the Sandy Bridge partition for Waal_40m test case since this D-Flow FM model has higher 

memory requirements. The nodes on the systems we used have significantly different architectures, with a lower 

core frequency on MARCONI (1.4 GHz for KNL cores) compared to that on Cartesius (2.6 GHz for Haswell 

cores, 2.7 GHz for Sandy Bridge cores). 

For all test cases there is first a serial initialisation phase that we do not consider in the scalability analysis. We 

only consider the time spent in the time loop, which accounts for most of the running time in real life cases.  

Test cases (detailed in previous section) are representative of D-Flow FM use cases from real life applications for 

which computational grids are tailor made with specific spatial scales. Therefore, we do not have different 

computational grids with different spatial scales for each test case to test weak scalability. However, test cases 

differ in the number of grid cells: from 108143 to 9584149. 
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Speedup and Efficiency of Test Cases 

  

  

Figure 1: Speedup and efficiency of all test cases on Cartesius and MARCONI 

From Figure 1 we observe the following: 

1) Some test cases are too small to scale well for larger number of processes on Cartesius: 

– For the Lake_Marken and North_Sea_2D test cases the parallel efficiency is good (> 0.50) for only up to 64 

processes. 

– For the Waal_40m test case the parallel efficiency is good (> 0.50) for only up to 48 processes.  

2) The larger test cases (North_Sea_3D and North_Sea_3D_ST, Waal_schematic, and GTSM) show good 

scalability (efficiency > 0.50) up to 256 processes on Cartesius. 

3) The scaling behaviour is similar on both machines, but the computation time on MARCONI is much higher 

than on Cartesius when the number of processes is the same (~4x higher for most test cases, up to ~10x higher for 

Waal_schematic, see Figure 5 for the Lake Marken and GTSM test cases). 

Several previous scalability analyses showed similar results. However, these analyses were only for up to 100 

cores [17], [19] and [20]. The observations can be largely explained as a result of the reduced size of the 

subdomains when scaling up and is expected. There is also a known scaling limit of PETSc (used for linear system 

solving in D-Flow FM) for local problem sizes smaller than ~20,000 unknowns and corresponds to the measured 

efficiency drop in our test cases. 

Given the present parallelisation of D-Flow FM (see section Computational Methods of D-Flow FM), for an 

increasing number of partitions and relatively small test cases, the halo region of each partition (amount of ghost 

cells) becomes large compared to the amount of internal grid cells of the partition. This means that the maximum 
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attainable speedup will be sub-linear. Table 2 shows the increase in total size when increasing the number of 

partitions for the GTSM test case.  

Table 2: total size of domain including ghost cells for GTSM test case 

#partitions Total #cells (including ghost cells) Fraction of ghost cells in total # 

cells: #ghost cells / total #cells 

1 9582942 0 

16 9647149 0.01 

64 9757414 0.02 

256 10039319 0.05 

1024 10719170 0.11 

4096 12354089 0.22 

8192 13838713 0.31 

 

Efficiency of the PETSc solver compared to the rest of the time loop 
 

D-Flow FM solves the discretised shallow water equations for the water levels implicitly in time, with momentum 

advection treated explicitly (for details, see [1]). The velocities and fluxes are then obtained by back substitution. 

The algorithm is a combined approach, where a configurable part of the system is solved by Gaussian elimination, 

and the remaining unknowns are solved iteratively with the conjugate gradient method available from PETSc.  

We computed the efficiency of the PETSc solver and the rest of the time loop separately in Figure 2. The efficiency 

of the linear system solver with PETSc is significantly worse than the efficiency of the rest of the time loop, and 

eventually accounts for most of the runtime when we increase the number of MPI processes, as shown by the 

percentage of the runtime spent in KSPSolve, (PETSc’s solver main routine) in Figure 3. 

Figure 3 also confirms the scaling limit of PETSc for small local problems size (see section Speedup and Efficiency 

of Test Cases). 
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Figure 2: Efficiency of PETSc and non-PETSc part of the time loop for Lake_Marken, GTSM, North_Sea_3D_ST and Waal_schematic test 

cases on Cartesius and MARCONI 

 

  

Figure 3: Portion of time loop spent in linear system solve with PETSc::KSPSolve (right) and speedup of KSPSolve (left) for Lake_Marken 

and GTSM test cases on Cartesius and MARCONI 
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MPI Profiling and Load Balance 
 

We profiled the MPI communication using IPM, a portable profiling infrastructure that provides a low-overhead 

performance profile of the performance aspects and resource utilisation in a program [21], measuring the minimum 

and maximum time spent by a process in MPI operations (Figure 5). This shows that the time spent in MPI 

communication within D-Flow FM, including waiting time, does not scale well and prevents scaling for high 

numbers of processes, thereby accounting for most of the time spent in the time loop. Moreover, there is a 

significant imbalance between the minimum and the maximum MPI Time. 

A Hotspot analysis of D-Flow FM with VTune (e.g. for GTSM test case in Figure 4) shows that almost all MPI 

communications are done in the linear solver (i.e. the conjugate gradient solver of PETSc), in MPI_Allreduce calls. 

Note also that the portion of elapsed time spent in MPI communications and its scaling behaviour are similar on 

Cartesius and MARCONI, even though the architectures are significantly different. 

 

 

 

 

Figure 4: Hotspot analysis of GTSM test case with 64 MPI processes on Cartesius with VTune, with the call stack of PMPI_Allreduce 
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Figure 5: Elapsed and MPI Time (max and min) in Time Loop for Lake_Marken and GTSM test cases on Cartesius and MARCONI. 

To better interpret our measurements, we used the metrics and methodology developed by POP COE for parallel 

performance analysis [22]. The communication efficiency (CommE) can be calculated by the maximum 

computation time divided by the runtime. A value below 0.80 is considered poor. In Table 3 and Table 4, we see 

that the communication efficiency is poor for high numbers of processes, which agrees with our observations from 

Figure 1. This implies that we need to investigate the MPI aspects of the code further. 

Table 3: Communication Efficiency of time loop for different test cases on Cartesius 

#partitions 16 64 256 1024 2048 4096 8192 

Lake_Marken 0.91 0.72 0.43 0.23 - - - 

GTSM 0.98 0.95 0.85 0.64 0.55 - - 

Waal_schematic 0.99 0.96 0.92 0.42 0.36 0.17 0.39 

Table 4: Communication Efficiency of time loop for different test cases on MARCONI 

#partitions 16 64 256 1024 2048 

Lake_Marken 0.94 0.68 0.39 0.24 - 

GTSM 0.95 0.81 0.72 0.59 0.54 

 

The load balance (LB) metric is calculated by the average computation time divided by the maximum computation 

time. In Table 5 and Table 6, we see that for GTSM and Lake_Marken test cases the load balance decreases for 

high number of partitions. It is considered low when lower than 0.80, which is reached for 2048 processes for 

GTSM, 256 for Lake_Marken and 8192 for Waal_schematic. For Waal_schematic, the load balance stays quite 

good for larger number of partitions and then drops drastically with 8192 partitions. Therefore the parallel 

decomposition of the mesh also requires further investigation. 

Table 5: Load balance of time loop for different test cases on Cartesius 

#partitions 16 64 256 1024 2048 4096 8192 

Lake_Marken 0.89 0.87 0.77 0.81 - - - 

GTSM 0.97 0.92 0.89 0.84 0.78 - - 

Waal_schematic 0.99 0.97 0.95 0.92 0.90 0.86 0.14 
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Table 6: Load balance of time loop for different test cases on MARCONI. 

#partitions 16 64 256 1024 2048 

Lake_Marken 0.92 0.89 0.83 0.80 - 

GTSM 0.95 0.88 0.83 0.78 0.68 

 

The average time spent in an MPI_Allreduce call in D-Flow FM is quite high compared to the results measured 

using OSU benchmarks [18] with comparable message sizes. For example, for GTSM test case with 1024 

partitions, and an average message size of 439 bytes, the average time per MPI_Allreduce call is 1174 µs. With 

osu_allreduce benchmark and 512 bytes messages and 1024 processes, the average time per MPI_Allreduce call 

is only 54 µs. This large difference is probably due to the computational imbalance which causes longer waiting 

times in MPI_Allreduce calls for the fastest subdomains. We are planning to further investigate this. 

 

Main Identified Bottlenecks 
 

– D-Flow FM is memory bound (already known from a previous study [19]). 

– D-Flow FM is MPI bound on the selected test cases, and most of the MPI communications consist of 

MPI_Allreduce operations that are done in the linear solver (PETSc). 

There is a significant difference between the lowest and the highest time spent in MPI communication by a process.  

The communication efficiency and the computational load balance are poor for large number of partitions. We 

think that the MPI imbalance is caused in large part by the computational imbalance, which is in turn largely 

caused by the mesh imbalance. Therefore, we focus on improving the computational load balance to improve the 

overall performances. 

Partitioning: Lowering the Mesh Imbalance 
 

Part of the observed imbalance in the computational load, appears to come from an uneven partitioning of the 

mesh. The partitioning algorithm succeeds very well at creating equally sized domains, but the halo regions are 

not accounted for. However, there is a non-negligible amount of computational work associated with the halo, and 

the halo regions sizes are imbalanced. Furthermore, its relative size increases when hard-scaling the application to 

a larger number of processes. Our strategy is therefore to reduce the imbalance in the partitioned mesh, with the 

contribution of the halo included. 

Partitioning Strategy to Improve Mesh Imbalance 
 

There are multiple ways to measure the imbalance of a mesh partitioning. We define the imbalance by the 

maximum number of mesh cells divided by the mean number of mesh cells in a partition: 
imbalance = max_i(nCells_i)/ mean_nCells 

In D-Flow FM, meshes are partitioned with METIS, using either recursive bisection of k-way partitioning. The 

imbalance is caused by the halo regions that are added after the mesh partitioning with METIS. The data in Table 

7 and Table 8 show indeed that, although the inner subdomains are well-balanced, the size of their halo region 

varies substantially and even more so for a larger number of partitions. 

Table 7: Mesh imbalance for GTSM test case – METIS k-way partitioning 

#partitions mean number 

of grid cells 

minimum 

number of grid 

cells 

maximum 

number of grid 

cells 

standard 

deviation 

imbalance 

16 602947 600076 606626 1712 1.01 

64 152460 150242 155655 1269 1.02 

256 39216 37762 41576 773 1.06 

1024 10468 9441 11590 418 1.11 

2048 5551 4742 6545 310 1.18 
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Table 8: Mesh imbalance for Lake Marken test case – METIS k-way 

#partitions mean number 

of grid cells 

minimum 

number of grid 

cells 

maximum 

number of grid 

cells 

standard 

deviation 

imbalance 

4 87197 86298 88090 749 1.01 

16 22829 21978 23880 491 1.05 

64 6385 5596 7117 311 1.11 

256 2017 1400 2780 200 1.38 

Halo-Aware Repartitioning 
 

Starting from the original partitioning with METIS, we use ParMETIS to repartition taking into account the size 

of the ghost region of each subdomain (this is an adaptation of the algorithm proposed in [23]). 

1. Compute the size of the halo region of each subdomain 

2. For each subdomain, define weights on its internal cells derived from the total size of the subdomain (internal 

+ ghost cells) 

3. Perform a repartitioning using these weights, which should reduce the imbalance 

4. If the imbalance is too large, use the new partitioning and go back to 1. 

Using this algorithm, we were able to lower the imbalance (see Table 9 and Table 10). ParMETIS uses the k-way 

algorithm for repartitioning, so we used k-way partitioning with METIS as well for a more coherent performance 

comparison. 

 

Table 9: Mesh imbalance for Lake Marken test case – METIS k-way partitioning vs. halo-aware repartitioning with ParMETIS 

#partitions partitioning 

algorithm 

mean 

number of 

grid cells 

minimum 

number of 

grid cells 

maximum 

number of 

grid cells 

standard 

deviation 

imbalance 

64 METIS k-way 6385 5596 7117 311 1.11 

METIS k-way + 

repartitioning  

6438 6059 6776 136 1.05 

256 METIS k-way 2017 1400 2780 200 1.38 

METIS k-way + 

repartitioning  

1986 1758 2310 81 1.16 

Table 10: Mesh imbalance for GTSM test case – METIS k-way vs. halo-aware repartitioning with ParMETIS 

#partitions partitioning 

algorithm 

mean 

number of 

grid cells 

minimum 

number of 

grid cells 

maximum 

number of 

grid cells 

standard 

deviation 

imbalance 

256 METIS k-way 39209 37655 41618 755 1.06 

METIS k-way + 

repartitioning  

39576 37284 41231 677 1.04 

1024 METIS k-way 10703 9296 12178 372 1.14 

METIS k-way + 

repartitioning  

10662 9424 11843 306 1.11 

 

The size of the biggest subdomain (which should correspond to the ‘slowest’ process) is reduced by  

– 5% for Lake_Marken 64, 

– 20% for Lake_Marken 256, 
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– 1% for GTSM 256, 

– 3% for GTSM 1024. 

Comparing the results before and after halo aware repartitioning (Table 11 to Table 14), we do not see a significant 

impact of the improved imbalance on the performances for Lake_Marken and GTSM test cases. 

 

Table 11: Profiling of Lake Marken test case with METIS k-way partitioning and halo aware repartitioning using IPM and PETSc built-in 

profiler – on Cartesius 

#partitions type of 

partitioning 

time loop (s) min MPI time 

(s) 

max MPI time 

(s) 

KSPSolve 

Time 

Ratio max/min 

Flops in 

KSPSolve 

64  METIS k-way 311.2 70.2 171.6 172.2 1.2 

METIS k-way + 

repartitioning 

308.6 81.7 166.6 175.5 1.2 

256  METIS k-way 173.8 88.3 131.5 116.4 1.7 

METIS k-way + 

repartitioning 

175.3 93.1 125.3 122.0 1.7 

Table 12: Load Balance and Communication Efficiency of time loop for Lake_Marken test case with METIS k-way partitioning and halo 

aware repartitioning - on Cartesius 

#partitions type of partitioning Load Balance  Communication 

Efficiency  

64 METIS k-way 0.86 0.76 

 METIS k-way + repartitioning 0.91 0.72 

256 METIS k-way 0.80 0.48 

 METIS k-way + repartitioning 0.86 0.46 

Table 13: Profiling of GTSM test case with METIS k-way partitioning and halo aware repartitioning using IPM and PETSc built-in profiler – 

on Cartesius 

#partitions type of 

partitioning 

time loop (s) min MPI time (s) max MPI time 

(s) 

KSPSolve 

Time 

Ratio max/min 

Flops in 

KSPSolve 

256  METIS k-way 111.0 17.6 42.2 63.0 1.4 

METIS k-way + 

repartitioning 

110.5 16.0 38.4 59.3 1.4 

1024  METIS k-way 43.1 13.9 24.0 22.4 1.7 

METIS k-way + 

repartitioning 

44.6 14.3 24.0 21.3 1.8 

Table 14: Load Balance and Communication Efficiency of time loop for GTSM test case with METIS k-way partitioning and halo aware 

repartitioning - on Cartesius 

#partitions type of partitioning Load Balance  Communication 

Efficiency  

256 METIS k-way 0.92 0.83 

 METIS k-way + repartitioning 0.90 0.85 

1024 METIS k-way 0.89 0.66 

 METIS k-way + repartitioning 0.86 0.66 

 

Reducing the imbalance in the subdomain sizes including halo regions may reduce the load imbalance. However, 

the observed load imbalance may have a combination of causes. Possible causes, next to imbalance in subdomain 

sizes, are: less efficient PETSc part and/or non-PETSc part, the role of additional halo points due to stencil for 
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MPI communication, and the role of the “PETSc” limit. Further research is needed to determine the actual effects 

and hence importance of the various causes. 

Hypergraph Partitioning 
 

It is known that graphs do not model parallel communication volume well. Hypergraphs, on the other hand, are 

able to model the communication volume accurately (see [23]) and allow more complex objectives for partitioning, 

like minimizing the number of ghosts vertices or cells. 

We used hMETIS, the hypergraph partitioner from the METIS suite. hMETIS uses k-way partitioning, so we used 

k-way partitioning with METIS as well for a more coherent performance comparison. 

 

Table 15: Inner subdomain imbalance for Lake Marken test case– METIS k-way partitioning vs. hMETIS hypergraph k-way partitioning 

#partitions type of 

partitioning 

mean number of grid 

cells in inner domain 

minimum number of 

grid cells in inner 

domain 

maximum number of 

grid cells in inner 

domain 

inner domain 

imbalance 

256  METIS graph 1343 1342 1344 1.00 

hMETIS 

hypergraph 

1343 1262 1413 1.05 

1024  METIS graph 336 335 336 1.00 

hMETIS 

hypergraph 

336 250 363 1.08 

Table 16: complete subdomain imbalance (including ghost cells) for Lake Marken test case– METIS k-way partitioning vs. hMETIS 

hypergraph k-way partitioning 

#partitions type of 

partitioning 

mean number of grid 

cells in subdomain 

minimum number of 

grid cells in subdomain 

maximum number of 

grid cells in 

subdomain 

subdomain 

imbalance 

256  METIS graph 2017 1400 2780 1.38 

hMETIS 

hypergraph 

1906 1415 2307 1.21 

1024  METIS graph 717 445 1050 1.46 

hMETIS 

hypergraph 

671 434 807 1.20 

Table 17: Profiling of Lake Marken test case with METIS k-way partitioning and hMETIS hypergraph k-way partitioning using IPM and 

PETSc built-in profiler – on Cartesius 

#partitions type of 

partitioning 

time loop (s) min MPI time 

(s) 

max MPI time 

(s) 

KSPSolve 

Time 

Ratio max/min 

Flops in 

KSPSolve 

256  METIS graph 173.8 88.3 131.5 116.4 1.7 

hMETIS 

hypergraph 

174.8 94.6 130.7 123.8 1.8 

1024  METIS graph 228.7 181.0 200.0 184.6 2.1 

hMETIS 

hypergraph 

223.8 177.2 197.0 189.6 2.8 
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Table 18: Load Balance and Communication Efficiency of time loop for Lake_Marken test case with METIS k-way partitioning vs. hMETIS 

hypergraph k-way partitioning - on Cartesius 

#partitions type of partitioning Load Balance  Communication 

Efficiency  

256 METIS graph 0.80 0.48 

 hMETIS hypergraph 0.85 0.45 

1024 METIS graph 0.77 0.19 

 hMETIS hypergraph 0.77 0.19 

 

The hypergraph partitioning significantly lowers the total number of ghost cells and the imbalance (see Table 16). 

However, the performances on this test case with the new partitioning obtained using a hypergraph are similar to 

the performances using the original METIS partitioning (Table 17 and Table 18). With a higher number of 

partitions (1024), we see a more significant benefit on the imbalance and a small speedup for the time loop. 

Looking at the more detailed profiling in Table 17, we notice  

– a small slowdown on the PETSc part,  

– a small speedup on the MPI communication, 

– an increase on the computational imbalance for the linear system solve (KSPSolve), as shown by the increased 

ratio max/min Flops in KSPSolve. 

However, we were not able to use hypergraphs for other test cases with large meshes as hMETIS requires a lot of 

memory and in fact our attempts failed due to “Out of Memory” errors. Moreover, there are many parameters to 

tune for hMETIS to get the best possible output, so it is probably possible to get a better partitioning than the one 

used here. 

Pushing the Scaling Limit of the Linear Solver with a Communication 

hiding Linear Solver 
 

For linear system solving in D-Flow FM we use PETSc, which has a known scaling limit for local problem sizes 

smaller than ~20,000 unknowns. We reached this limit in our scalability analysis (Figure 1), using PETSc’s 

conjugate gradient solver (KSPCG) with a block Jacobi preconditioner. To push that limit further, communication 

avoiding and communication hiding implementations of the conjugate gradient method have been developed. We 

tried to apply it to D-Flow FM. 

Theoretical Advantage of Pipelined CG over classical CG 
 

In PETSc, the pipelined CG method is implemented in KSPPIPECG. It uses only one non-blocking reduction per 

iteration instead of two blocking reductions for a standard CG. The non-blocking reduction is overlapped by the 

matrix-vector product and preconditioner application (see [24]). 

Non-blocking MPI Collectives 
 

Non-Blocking Collectives are part of the MPI-3 standard, and so are fairly recent features of MPI implementations. 

They are not well supported by all MPI implementations and need parameter and configuration tuning to be 

efficient. For most MPI implementations, this means using an asynchronous progress thread to manage 

communication in parallel with the application computation and, as a result, achieve better 

communication/computation overlap. With Intel MPI, this feature is supported for the multithreaded versions only 

(‘release_mt’ and ‘debug_mt’). With MPICH, version 3.0 and later implement the MPI-3 standard and the default 

configuration supports use of threads.  

Thread-based asynchronous progress is the approach adopted by most MPI communication models, but it suffers 

from the restriction that a background thread can make progress only for the process that spawned it. Thus, we 

need as many progress threads as MPI processes, and choose either to dedicate half of the cores to the progress 

threads, or to perform oversubscription of the cores (i.e. spawning more threads than cores) which can have a high 

impact on performances (see [25]). Furthermore, this model forces the MPI runtime to maintain multithreaded 

safety, which results in additional overhead because of lock contention and memory barriers. 
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Performance Testing of KSPPIPECG on a simple PETSc Test Case 
 

To make sure that our MPI implementations and hardware allow good performances of KSPPIPECG, we did 

performance tests with KSPIPECG on a simple example from PETSc: SNES/ex48 with a 1024x1024 matrix. We 

compared the running time with asynchronous progress threads (1 progress thread per MPI process) and without 

asynchronous progress threads, using a block Jacobi preconditioner, for the KSPCG and KSPPIPECG solvers. We 

also used the running time with the single threaded version of the MPI library as a reference. 

– with Intel MPI we set 'I_MPI_ASYNC_PROGRESS=1’ and ‘I_MPI_ASYNC_PROGRESS_THREADS=1' 

and we used the ‘release_mt’ version to enable asynchronous progress. 

– with MPICH we set ‘MPICH_ASYNC_PROGRESS=1’ and ‘MPICH_MAX_THREAD_SAFETY=multiple’ 

to enable asynchronous progress. 

– for the single threaded version, we used the Intel MPI ‘release’ version, and with MPICH we set 

‘MPICH_MAX_THREAD_SAFETY=single’. 

In Table 19, we see that with asynchronous progress enabled, KSPPIPECG is faster than KSPCG on this example. 

However, the overhead caused by the use of the thread-safe MPI library is too large to get speedup compared to 

synchronous runs with KSPCG and KSPPIPECG. This holds for both MPICH and Intel. 

 

Table 19: performances of a simple PETSc example using PIPECG compared to CG on GTSM test case on Cartesius and MARCONI 

System and test 

case 

MPI 

implem-

entation 

Solver Time 

multithreaded 

MPI without 

async progress 

(s.) 

Time 

multithreaded 

MPI with async 

progress enabled 

(s.) 

Time single 

threaded MPI 

without async 

progress (s.) 

Total 

time 

KSPSolve Total 

time 

KSPSolve Total 

time 

KSPSolve 

Cartesius 

240P/10N 

 

Intel CG 1.13 1.06 2.61 2.26 1.14 1.07 

PIPECG 1.15 1.08 1.60 1.46 1.15 1.08 

MPICH CG 1.55 1.47 2.39 2.18 1.47 1.39 

PIPECG 1.57 1.49 2.12 2.01 1.55 1.47 

MARCONI 

120P/2N 

Intel CG 60.90 55.65 108.4 97.61 60.01 54.36 

PIPECG 60.15 54.76 88.97 81.97 57.45 52.32 

MARCONI 

240P/4N 

Intel CG 32.86 29.94 72.29 64.65 33.34 29.96 

PIPECG 40.22 36.84 54.05 49.72 42.55 39.10 

 

Performance Testing of KSPPIPECG in D-Flow FM 
 

As expected from the results on a simple test case above, using KSPPIPECG instead of KSPCG in D-Flow FM 

compiled with Intel MPI does not give us any speedup on Cartesius (Table 20).  

Table 20: performances of D-Flow FM using PIPECG compared to CG for GTSM test case on Cartesius 

Test case CG - Time single 

threaded MPI without 

async progress (s.) 

CG - Time multithreaded 

MPI with async progress 

enabled (s.) 

PIPECG - Time 

multithreaded MPI with 

async progress enabled 

(s.) 

 Total time KSPSolve Total time KSPSolve Total time KSPSolve 

GTSM 64P/3N 413 241 736 442 663 372 

GTSM 256P/11N 116 68 309 206 253 150 



   

 

 15 24/07/2019  

 

The overhead of the thread-safe MPI library prevents speedup compared to synchronous runs. The performances 

of this solver are very hardware and MPI-implementation dependent, and we could not reproduce the performances 

published by the developers (in [24]). 

Summary and conclusion 
 

For typical real-life applications, for instance for highly detailed modelling and operational forecasting, there is a 

need to make D-Flow FM more efficient and scalable for high performance computing. The selected test cases 

from model applications Deltares are developing impose computational challenges for Deltares. 

 

We successfully ported and tested D-Flow FM on Cartesius and MARCONI/KNL. Previous testing at Deltares did 

not go beyond a few hundred MPI processes, and we successfully ran representative simulations on up to 8192 

MPI processes. The scalability depends on the architecture, and we measured some speedup up to 2048 on 

Cartesius, and up to 8192 on MARCONI, and a good efficiency (>0.5) up to 256 MPI processes on Cartesius and 

1024 processes on MARCONI for large meshes. As a rule-of-thumb, partitions should have more than ~25000 

cells to get good parallel efficiency. On MARCONI KNL, the performances are not as good as on Cartesius since 

the current version of D-Flow FM is not targeted for good performance with the specific capabilities of the KNL 

architecture. However, it was very useful to have access to two systems with different architectures to compare 

the behaviour of D-Flow FM, get a good overview of its performance and identify the bottlenecks on Tier-1 and 

Tier-0 systems. This yielded new insights and it also gave us the opportunity to test possible improvements in D-

Flow FM for real-life applications. For the selected test cases from the current project, it has become clear which 

further steps have to be taken to be able to run the software efficiently on the Tier-0 systems. 

 

Our optimisation efforts were aimed at two main bottlenecks: the linear solver scaling limit, and the mesh 

imbalance for strong scaling. 

 

To improve the mesh imbalance arising from the mesh partitioning and large halo regions we investigated two 

strategies: 

– Halo-aware repartitioning: the resulting partitionings including halo region are better balanced, but the 

imbalance on the internal subdomains (excluding the halo regions) increases. 

– Using a hypergraph instead of the classic dual graph to represent and partition the mesh. 

With both strategies the resulting partitionings including halo region are better balanced, but the imbalance on the 

internal subdomains (excluding the halo regions) increases. The performance results are not that significant yet 

and further research is needed to distinguish the different contributions and relations (PETSc part, non-PETSc 

part, role of additional halo points due to stencil for MPI communication, role of “PETSc limit”). 

 

We did experiments with the pipelined conjugate gradient (PIPECG) method implemented in PETSc. This is 

supposed to improve performances of the conjugate gradient (CG) method when communications are important. 

However, we were not able to get any performance improvement or to reproduce the speedup published by the 

authors. We tested CG and PIPECG on a simple example as well as on a real case with D-Flow FM, failing to get 

a speedup with PIPECG over CG with single threaded MPI. In addition, the results for the PIPECG method appear 

to be highly dependent on the MPI implementation and architecture. 
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