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ABSTRACT

Estimation of the background is an essential step in auto-
mated extraction of faint, extended objects from large-scale,
optical surveys in astronomy. In this paper we present an
improvement on the background estimation method of a
commonly used tool in this field: Source Extractor (SEx-
tractor). We show that the original method suffers from bias
caused by presence of extended sources, and present an al-
ternative which greatly reduces this effect, leading to much
better preservation of faint extended structures.

1. INTRODUCTION

Given the sheer size of modern astronomical surveys, auto-
mated detection of objects is an important processing task.
A well-known example is the Sloan Digital Sky Survey [1]
(SDSS) where the DR7 [2] catalogue contains 357 million
unique objects. Manual extraction of such numbers of ob-
jects is not feasible. A commonly used tool is Source Ex-
tractor (SExtractor) [3], which uses a fixed threshold equal to
1.5 times the standard deviation of the background estimate
with the purpose of image segmentation while avoiding false
positives. An image background, caused by reflected light
and photo-chemical reactions in earth’s atmosphere, is esti-
mated and subtracted before thresholding. SExtractor’s es-
timate shows bias from objects as can be seen in Figure 1.
Part (a) shows a pair of merging galaxies with a faint tail
structure linking them, part (b) shows the contrast-stretched
background estimate from SExtractor. Clearly, there is corre-
lation with the objects. Subtracting this background, shown
in part (c), with pixels below the background estimate set to
zero, reduces their intensities, leading to failure in detecting
faint outlying regions of galaxies, or tidal tails in galaxy merg-
ers. Figure 1(d) shows the same result, but with the new, flat
background estimate. Finally, part (e) and (f) show the differ-
ent object detections from SExtractor and the latest version
our own detection method[4]. Clearly, faint structures are de-
tected better.
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Fig. 1. Crop of SDSS file fpC-002078-r1-0157.fit
showing merging pair of galaxies (a) original image; (b)
background estimate of the image in by SExtractor, contrast
stretched; (c) difference of (a) and (b), smoothed, logarithmic
scale and showing values above .75σ̂bg; (d) as (c) but with
new background estimate subtracted. Part (e) shows source
detections by SExtractor with default settings, while (f) shows
the same results for our complete method from [4].

In this paper we present part of an ongoing project to pro-
vide robust methods for extraction of these faint structures,
which are essential to the understanding of the evolution and
morphology of galaxies. Initial results were presented in [5].
In this paper we focus on background estimation. We provide
a heuristic which finds flat regions devoid of objects robustly,
and determine that in the current data set, backgrounds turn
out to be nearly flat. Unlike SExtractor’s estimates that cor-
relate with objects, our constant estimates derived from the
detected empty areas provide much better results. The new
method was validated on a data set of 254 monochrome im-
ages, a subset of the corrected images in SDSS DR7. Selec-
tion is based on the inclusion of merging and/or overlapping



galaxies which often include faint structures. Only images
from the r-band are used which have the best quality [6]. The
paper is organized as follows: first the method for estimating
background is described, along with a discussion of parameter
settings, and a critical analysis of the flat background model.
This is followed by a comparison with the method in SExtrac-
tor, the conclusions and future work.

2. BACKGROUND ESTIMATION

Images are acquired with a CCD, photons are converted to
electrons which are counted per pixel. After subtracting the
software bias from the corrected images, the pixel values are
directly proportional to photo-electron counts[7]. Noise is
mostly Poissonian due to photo-electron counts. The distri-
bution is close to Gaussian; the sky (background) typically
contributes 670 photo-electrons to the counts per pixel. In our
method, background pixel values are assumed to be from a
Gaussian distribution. The image is assumed to be the sum of
a background image B, objects image O and Gaussian noise
where the variance is equal to g−1(B+O)+R, for per-image
constants g, equivalent to gain in the SDSS, and R, which is
due to other noise sources; read noise, dark current and quan-
tisation. A tile of the image will be called flat if the pixel
values could have been drawn from a single Gaussian distri-
bution, e.g. B + O is close to constant in the tile. The back-
ground is approximated by the mean value of flat tiles and
is subtracted from the image. To find flat tiles, we first split
the image into tiles of the same size. The following statistical
tests are applied to the tiles:

1. a normality test using the D’Agostino-Pearson K2-
statistic[8] which is based on the skewness and kurto-
sis.

2. t-tests of equal means for different parts of the tile.

The t-tests are used because the normality test does not take
positions of pixels into account. Only using the normality test
could lead to situations where tiles with a near-linear slope
are accepted. The procedure is outlined in Algorithm 1.

Inverses of cumulative distribution functions (CDFs) are
used to determine rejection boundaries in the tests. For ex-
ample the K2-statistic has approximately the χ2 distribution
with 2 degrees of freedom. The CDF inverse in this case sim-
plifies to−2 log(1−p) which gives a boundary of−2 log(α1).
A potential issue is that the statistics are not independent.
There is a noticeable error in the actual rejection rate due to
the χ2 approximation, as seen in Figure 2, for α = 0.05.
However, the simulated rejection rate for a 16 × 16 flat tile
is still close to 0.05 and the error decreases for larger tiles.
The rejection rates are evenly divided between the K2-test
and the combined t-tests. Other ratios have not been tested.
The whole procedure is outlined in Algorithm 2.

Algorithm 1 IsFlat(T, α)
In: w × w tile T . w is even. Rejection rate α.
Out: True if T is flat. False otherwise.

1: α1 ← 1− (1− α)1/2
2: Perform the D’Agostino-Pearson K2-test on the values

of T with rejection rate α1. Return false if rejected.
3: (T1,1, T1,2, T2,1, T2,2)←

w

2
× w

2
tiles partition of T .

4: α2 ← 1− (1− α)1/4
5: Perform a t-test of equal means on the pairs (T1,1 ∪
T1,2, T2,1∪T2,2) and (T1,1∪T2,1, T1,2∪T2,2) using rejec-
tion rate α2. Return false if the null hypothesis of equal
means (and variances), in any of the two tests, is rejected.

6: Return true.
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Fig. 2. IsFlat(T, 0.05). Rejection rate for square flat tiles
based on 1 million simulations for each size.

Algorithm 2 BGMeanAndVariance(I, α, w0)

In: Image I with at least one flat w0×w0 tile. Rejection rate
α. Minimum tile width w0.

Out: Background mean and variance estimates.
1: w ← w0

2: while the 2w × 2w tiles partition of I contains a tile T
where IsFlat(T, α) is true do

3: w ← 2w
4: end while
5: Calculate and return the mean and variance of the pixels

in the w × w flat tiles.

Larger flat tiles are preferred to make detection of slopes
due to objects easier. Some rows at the bottom of the im-
age and columns at the right side of the image are ignored
when the height and width are not divisible by w. Doubling
w when searching for a tile size guarantees that the function
runs in O(n log n) time, with n the number of pixels. The
noise variance is also returned because it is needed later for
object segmentation. An important issue is the value of α.
Assuming the background estimate does not have a negative
bias, settings that give a lower average background estimate
are better, as the only bias in the background estimate is a pos-
itive bias from objects. The only possible cause of a negative
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Fig. 3. Average background estimate for the data set as a
function of α.

0 100 200 300 400 500
0

10

20

30

40

50

Number of flat tiles

F
re

qu
en

cy

Fig. 4. Histogram of the number of flat 64× 64 tiles.

bias are object-like fluctuations in the background. However,
such fluctuations would not be moving with stars and galaxies
and would appear as artefacts. When α is too close to 1 the tile
size decreases which results in more bias from objects. When
α is too close to 0 more tiles are accepted which also results
in more bias from objects. Figure 3 shows results for various
settings of α. Considering the standard deviation of the noise
at the background is approximately 5.4 for most images, there
is not much difference between α = 10−7, α = 0.05 and
α = 0.5: α is kept at 0.05. All images in the data set have
64× 64 flat tiles. The minimum tile width w0 is set to 64.

3. IS A CONSTANT A GOOD FIT?

An important question is whether the constant background
gives a good model fit. Let µF be a statistic representing the
mean of a flat tile, µ̂bg the background estimate (the hat indi-
cates an estimate) and σ̂2

bg the estimate of the noise variance
at the background. If the background is flat, and the flat tiles
are not biased by objects, µF ∼ N(µbg, w

−1σbg), wherew is
the tile width, and let β = (µ̂bg − µF )σ̂

−1
bg . β approximately

∼ N(0, w−1) with µ̂bg relatively constant. When w = 64,
95% of the absolute β values would be below 0.031 on aver-
age. In Figure 5 this is clearly not the case. 95% of the ab-
solute β values are below 0.14. If changes in the background
are the main cause (the background is not flat), a different fit
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Fig. 5. Distribution of β, for all images combined. Tile size
is 64× 64.

Fig. 6. Image with β outliers. Left: 64 × 64 flat tiles shown
in blue; right: 128 × 128 flat tiles shown in blue. SDSS file:
fpC-003836-r4-0249.fit

closer to the local estimates could be better. The variations in
the local estimates are still small, considering most detected
objects contain pixel values above 3 (× standard deviation of
the noise). Images with outliers are inspected to determine the
cause. The background estimates in the image in Figure 6 at
64×64 tile size and 128×128 are 1137.1 and 1135.9 respec-
tively, with σbg ≈ 5.4, which shows the influence of the large
object on the local estimates. The images in Figure 7, which
also have been picked to inspect β outliers, have a similar sit-
uation. The main cause of the relatively large absolute values
of β appears to be objects, not changes in the background.
Experimentally, we verified that a non-constant background
fit closer to the local estimates would increase the error at lo-
cations correlating with objects. For this data set, and these
local background estimates, a constant is a good fit.

4. COMPARISON WITH SEXTRACTOR

SExtractor uses bi-cubic interpolation between local back-
ground estimates found by iteratively clipping pixel values
above 3× the sample standard deviation and recalculating the
sample mean. SExtractor uses 64×64 tiles by default. Figure
8 shows that the constant estimate suffers less from object
bias on average. The background estimate by SExtractor is
1.27 higher on average which corresponds approximately to
0.23σbg, using σbg ≈ 5.4. An image-sized tile in SExtractor
also reduces bias, on average, but the higher noise standard



Fig. 7. Images with β outliers. 64 × 64 flat tiles shown in
blue. Left: SDSS file fpC-005313-r1-0067.fit; right:
SDSS file: fpC-005116-r5-0148.fit
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Fig. 8. Average estimate of the background (top) and noise
standard deviation at the background (bottom) for all images,
column-wise.

deviation, compared to the (other) constant, indicates a worse
fit. The background estimate by SExtractor correlates with
objects, see Figure 9, making it more difficult to detect (parts
of) objects after subtraction. For example the connection be-
tween the merging galaxies in Figure 1(d) is more clear than
in Figure 1(c). Another problem in the background estimation
by SExtractor due to correlation with objects is distortion of
object shapes, as seen in Figure 10, which appears to hap-
pen for every non-constant estimate. With the goal of having
the least object bias and preserving object shapes, using the
constant background estimation is clearly better.

5. CONCLUSIONS AND FUTURE WORK

The results show that object bias is clearly reduced in our
method, in comparison to SExtractor, although a slight posi-
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Fig. 9. Background estimate by SExtractor compared to the
constant estimate, averaged column-wise, for Figure 1(a).

Fig. 10. Left: Constant background estimate, subtracted
from the image. Right: SExtractor background estimate,
subtracted from the image. Logarithmic scale. SDSS file
fpC-003836-r4-0249.fit.

tive bias is still expected. We feel this is better than a nega-
tive bias, which could lead to many false positive detections.
There are of course many other methods to which our ap-
proach should be compared before we can conclude that this
is the best way forward, including recent techniques based
on sparse representations and wavelets [9]. However, the im-
provement on the SExtractor scheme in this application is ev-
ident, and we are currently using it within an improved sta-
tistical attribute filtering framework for faint object detection
[4]. The new version shows far better detection of faint struc-
tures than SExtractor, as was shown in Figure 1(e) and (f).
Full results are in [4].

Future work would include different shapes (instead of
squares) of areas representing the background, which could
give better local estimates. One possible way is to start with
tiny square flat tiles and iteratively merge similar sized areas
if they pass a flatness test. We are also considering exten-
sions to non-flat background estimates for data sets which re-
quire this. One option is using weighted (by range) k-nearest
neighbours. This works even if only a few local background
estimates are available and, depending on k, is less affected
by outliers than bi-linear or bi-cubic interpolation.
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