
Improved Detection of Faint Extended
Astronomical Objects through Statistical

Attribute Filtering

Paul Teeninga1, Ugo Moschini1, Scott C. Trager2, and Michael H.F. Wilkinson1

1Johann Bernoulli Institute, and 2Kapteyn Astronomical Institute,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands?

Abstract. In astronomy, images are produced by sky surveys contain-
ing a large number of objects. SExtractor is a widely used program for
automated source extraction and cataloguing but struggles with faint
extended sources. Using SExtractor as a reference, the paper describes
an improvement of a previous method proposed by the authors. It is a
Max-Tree-based method for extraction of faint extended sources without
stronger image smoothing. Node filtering depends on the noise distribu-
tion of a statistic calculated from attributes. Run times are in the same
order.
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1 Introduction

The processing pipeline of a sky survey includes extraction of objects. With ad-
vances in technology more data is available and manually extracting every object
is infeasible. A survey example is the Sloan Digital Sky Survey [7] (SDSS) where
the DR7 [1] catalogue contains 357 million unique objects. SExtractor [2], a
state-of-the-art extraction software, first estimates the image background. With
the default settings, to perform a correct segmentation and avoid false positives,
objects are identified with the pixels with intensity at a threshold level higher
than 1.5 times the standard deviation of the background estimate at that loca-
tion. We refer here to such mechanism as fixed threshold : the threshold value
only relies on local background estimates in different sections of the image, ig-
noring the actual object properties. The downside is that parts of objects below
the threshold are discarded (Fig. 1). As improvement to the fixed threshold,
we proposed in [8] a method that locally varies the threshold depending on ob-
ject size by using statistical tests rather than arbitrary thresholds on attributes.
In this paper, we present an extension of that method modifying the attribute
used. In our method, the supporting data structure is a Max-Tree [5] created
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(a) (b)

(c)

Fig. 1: Result of SExtractor with default settings (a) and the proposed method
(b). The filament between the galaxies is not extracted in (a). SExtractor Back-
ground estimate (c) shows correlation with objects: a fixed threshold above this
already biased estimate would make the segmentation worse.

from the image, where every node corresponds to a connected component for
all the threshold levels. The choice is inspired by the simplified component tree
used in SExtractor and it was already suggested in [4]. Nodes are marked signifi-
cant if noise is an unlikely cause, for a given significance level. Nested significant
nodes can represent the same object or not and a choice must be made. When
deblending objects, other significant branches are considered as new objects. Re-
sults are compared with SExtractor. In SExtractor, every connected component
above the fixed threshold is re-thresholded at N levels with logarithmic spacing,
by default. The range is between the fixed threshold and the maximum value
above the component. A tree similar to a Max-Tree is constructed. Branches are
considered separate objects if the integrated intensity is above a certain fraction
of the total intensity and if another branch with such property exists. An image
background, caused by light produced and reflected in earth’s atmosphere, is
estimated and subtracted before thresholding. SExtractor’s estimate shows bias
from objects (see Fig. 1), which reduces their intensities. Backgrounds in the
SDSS dataset turn out to be nearly flat: constant estimates per image are used.
Our background estimate, which also reduces object bias, is briefly described
in Section 2. The data set of 254 monochrome images is a subset of the cor-
rected images in SDSS DR7. All selected images contain merging or overlapping
galaxies. These often include faint structures which are difficult to detect with
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SExtractor. We use r-band images, because they have the best quality [3]. The
set has been acquired by CCD. A software bias is subtracted from the images,
after which the pixel values are proportional to photo-electron counts [6]. Pois-
sonian noise dominates, but due to the high photon counts at the minimum grey
level, the distribution is approximately Gaussian, with a variance which varies
linearly with grey level. In the rest of the paper, the extension to our method
to identify astronomical objects is described. A comparison with the segmenta-
tion performed by SExtractor is presented, followed by conclusions and future
directions of research.

2 Background estimation

The image is assumed to be the sum of a background image B, object image
O and Gaussian noise. The noise variance is equal to g−1(B + O) + R, with g
equivalent to gain in the SDSS catalogue, and R due to other noise sources,
such as read noise, dark current and quantisation. First, the image background
must be computed. A method giving a constant estimate for the background
value that does not correlate with the objects was proposed in [8] and explained
more extensively in [9]. With the background removed, the variance of the noise
is g−1O + σ2

bg, where σ2
bg = g−1B + R is approximately equal to our estimate.

With µ̂bg and σ̂2
bg the estimates of background and variance, respectively, in

case g is not given, it is approximated by µ̂bg/σ̂
2
bg. It is assumed that R is small

compared to g−1µ̂bg. Negative image values are set to 0 and the Max-Tree is
constructed. The next step is to identify nodes that are part of objects, referred
to as significant nodes.

3 Identifying significant nodes

To identify the nodes in the tree belonging to objects, let us define Panc as the
closest significant ancestor or, if no such node exists, the root, for a node P in
the Max-Tree. P is considered significant if it can be shown that O(x) > f(Panc)
for pixels x ∈ P , given a significance level α. The pixel value associated with
P is indicated with f(P ). Similarly, let f(x) be the value of pixel x. The power
[11] attribute is similar to the definition of object flux or the integrated intensity
that also SExtractor uses. It is a measure widely used for object identification
in astronomy. A definition of the power attribute of P is

power(P ) :=
∑
x∈P

(f(x)− f(parent(P )))2. (1)

An alternative definition that will be used is

powerAlt(P ) :=
∑
x∈P

(f(x)− f(Panc))2. (2)

To normalize the power attribute, the values are divided by the noise variance σ2.
Four significance tests that use the attributes above are defined in the following.
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Significance test 1: power given area of the node. For node P we use hypothesis

Hpower := (O(x) ≤ f(parent(P )) ∀x ∈ P.

This test uses the definition of power attribute in Equation 1. Let us assume
Hpower is true and consider the extreme case O(x) = f(parent(P )) for pixels
x ∈ parent(P ). The variance of the noise σ2 is equal to g−1f(parent(P )) +
σ2

bg. For a random pixel x in P , the value (f(x) − f(parent(P )))2/σ2 has a χ2

distribution with 1 degree of freedom. As the pixel values in P are independent,
power(P )/σ2 has a χ2 distribution with degrees of freedom equals to the area
of P . The χ2 CDF (or inverse), available in scientific libraries, can be used to
test the normalized power given significance level α and node area. An example
of a rejection boundary of a χ2 CDF is shown in Fig. 2a. If power(P )/σ2 >
inverseχ2CDF(α, area), Hpower is rejected: O(x) > f(parent(P )) ≥ f(Panc), for
pixels x ∈ parent(P ), making P significant.

In all the next three significance tests (all right tailed) the exact distribution
of powerAlt is not known and it is obtained by simulation. In general, the
rejection boundary for a generic attribute and significance level α is the result
of the inverse CDF, which will be denoted as inverseAttributeCDF(α, ...). Let r
be an integer greater than zero and nsamples(α, r) := r/α with nsamples rounded to
the closest integer. A number of random independent nodes equals to nsamples is
generated. On average, for r nodes the attribute value is greater than or equal
to the rejection boundary. The best estimate of inverseAttributeCDF(α, ...),
without any further information about the distribution, is the average of the
two smallest of the r + 1 largest attribute values.

Significance test 2: powerAlt given area and distance. For node P we now use
hypothesis

HpowerAlt := (O(x) ≤ f(Panc)) ∀x ∈ P.

In significance test 1, leaf nodes are less likely to be found significant due to
their small area and the low intensity difference with the parent node. The
main idea behind significance test 2 is to make the significance level more con-
stant for every node, independently of its height in the tree, by referring to
its ancestor rather than the parent node. The definition of power attribute in
Equation 2 is used. Let us assume HpowerAlt is true and consider the extreme
case O(x) = f(Panc). Let us define distance(P ) := f(P ) − f(Panc). Let X
be a random set of area(P) - 1 values drawn from a truncated normal dis-
tribution with a minimum value of distance(P ). The variance of the normal
distribution is set to σ2 = g−1f(Panc) + σ2

bg. Attribute powerAlt(P ) has the

same distribution as distance2(P ) plus the sum of the squared values in X.
The rejection boundary for the normalized powerAlt attribute is provided by
the function inversePower-AltCDF(α, area, distance). Hypothesis HpowerAlt is
rejected if powerAlt(P )/σ2 > inversePowerAltCDF(α, area, d)): O(x) at some
pixels x in P is higher than f(Panc), making P significant. The minimum area of
a significant node is 2 pixels. An estimate is given for inversePowerAltCDF for

4 The final publication is available at link.springer.com.
DOI: 10.1007/978-3-319-18720-4 14.



100 101 102

100

101

Area

P
ow

er
 / 

σ2  / 
A

re
a

 

 
Noise image samples

χ2 rejection boundary

101 102

100

101

Area

P
ow

er
A

lt 
/ σ

2  / 
A

re
a

 

 
Rejection boundary est.
Fitted rational function
Noise image samples

Inverse χ2 CDF / Area

(a) (b)

100 101 102 103

100

101

Area

P
ow

er
A

lt 
/ σ

2  / 
A

re
a

 

 
Rej. boundary est.
Fitted rat. function
Noise image samples

1000 2000 3000 4000

−0.02

−0.01

0

0.01

0.02

Area

D
iff

er
en

ce
(c) (d)

Fig. 2: Rejection boundaries for significance test 1 (a) and the simulated rejection
boundaries for test 3 (b) and test 4 (c). Log-log scale. (d) shows the difference
between the rational function and the estimate in (c). α = 10−6.

constant α, varying area and distance. For each rejection boundary, varying
distance, a rational function is fitted to reduce the error and the storage space.

Significance test 3: powerAlt given area. It is a significance test that has the
same goal of significant test 2. It uses the distribution of powerAlt given α,
area. It is independent of the distance measure, not used as parameter in the
inverse CDF. Using the assumptions from significance test 2, distance(P ) has
a truncated normal distribution with a minimum value of 0, the same distribu-
tion as a random non-negative pixel value. The rejection boundary is calculated
through simulated images. Fig. 2b shows the rejection boundary and the fitted
rational function for this significance test.

Significance test 4: powerAlt given area, using a smoothing filter. It is basi-
cally equal to significance test 3 with the addition of the smoothing. Smoothing
reduces noise. A larger number of objects is detected with this test. The default
smoothing filter used in SExtractor is used as in [10]. Filtering is done after
background subtraction and before setting negative values to zero. Fig. 2c shows
the rejection boundary with its fitted rational function and Fig. 2d shows the
difference between the rational function approximation and the estimates for
this significance test.

Considerations about the false positives. Alg. 1 describes the method used for
marking nodes as significant. Visiting nodes in non-decreasing order by pixel
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Algorithm 1 SignificantNodes(M, nodeTest, α, g, σ2
bg)

In: Max-Tree M , significance test t, significance level α, gain g, variance of the noise
at the background σ2

B .
Out: Nodes in M that are unlikely to be noise are marked as significant.
1: for all nodes P in M with f(P ) > 0 in non-decreasing order do
2: if nodeTest(M,P, α, g, σ2

bg) is true then
3: Mark P as significant.
4: end if
5: end for

value simplifies the identification of Panc, if stored for every node. There is no
need if the χ2 test is used. Function nodeTest(M,P, α, g, σ2

bg) performs the sig-
nificance test and returns true if P is significant, false otherwise. The Max-Tree
of a noise image after subtraction of the mean and truncation of negative values
is expected to have 0.5n nodes, with n the number of pixels. An upper bound
on the number of expected false positives is α0.5n if the nodes are independent,
which is not entirely the case. Given a 1489 × 2048 noise image, the same size
of the images in the data set, and α = 10−6, the upper bound on the expected
number of false positives is approximately 1.52. An estimate of the actual num-
ber of false positives is 0.41, 0.72, 0.94 and 0.35 for the four significance tests,
respectively, averaged over 1000 simulated noise images.

4 Finding the objects

Multiple significant nodes could be part of the same object. A significant node
with no significant ancestor is marked as an object. Let mainBranch(P ) be a
significant descendant of P with the largest area. A significant node, with sig-
nificant ancestor Panc, that differs from mainBranch(Panc) is marked as a new
object. The assumption of a new object is not valid in every case: it depends
on the used significance test, filter and connectivity, as it will be shown in the
comparison section. The method is described in Alg. 2.

4.1 Moving up object markers

Nodes marked as objects have a number of pixels attached due to noise. The
number decreases at a further distance from the noiseless image signal, which can
be achieved by moving the object marker up in the tree, λ times the standard de-
viation of the noise. The obvious choice for an object node P is mainBranch(P ),
if such a node exists, since it does not conflict with other object markers. Oth-
erwise, it is chosen the descendant of P with the highest p-value found with
the related CDF for the power or powerAlt attribute. However, the CDF is
not always available or easy to store. Instead, the descendant with the largest
power attribute is chosen, if at least one exists. The function that returns the
descendant is called mainPowerBranch(P ). Alg. 3 describes the method. An al-
ternative to allowing a lower value of f(Pfinal) is to remove those object markers.
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Algorithm 2 FindObjects(M)

In: Max-Tree M .
Out: Nodes in M that represent an object are marked.
1: for all significant nodes P in M do
2: if P has no significant ancestor then
3: Mark P as object.
4: else
5: if mainBranch(Panc) does not equal P then
6: Mark P as object.
7: end if
8: end if
9: end for

Algorithm 3 MoveUp(M,λ, g, σ2
bg)

In: Max-Tree M , factor λ, gain g, variance of the noise at the background σ2
bg.

Out: For every object marker that starts in a node P and moves to Pfinal: f(Pfinal) ≥
f(Panc) +λ times the local standard deviation of the noise, when possible. f(Pfinal)
might be lower if Pfinal has no descendants.

1: for all nodes P in M marked as objects do
2: Remove the object marker from P .

3: h← f(Panc) + λ
√
g−1f(Panc) + σ2

bg

4: while f(P ) < h do
5: if P has a significant descendant then
6: P ← mainBranch(P ).
7: else if P has a descendant then
8: P ← mainPowerBranch(P ).
9: else

10: Break.
11: end if
12: end while
13: Mark P as object.
14: end for

If the parameter λ is set too low, there are too many noise pixels attached to
objects. However, to be able to display faint parts of extended sources a low λ
is preferred. After thorough tests on objects simulated with the IRAF software
with several noise levels, a value of 0.5 was found to be a good compromise.
Alg. 4 summarises the whole procedure from background estimation to object
identification. The proposed method is called MTObjects.

5 Comparison with Source Extractor

Our method is compared against the segmentation performed by SExtractor
2.19.5. The settings are kept close to their default values:
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Algorithm 4 MTObjects(I, nodeTest, α, g, λ)

In: Image I, function nodeTest, significance level α, gain g and move factor λ.
Out: Max-Tree M . Nodes in M corresponding to objects are marked.
1: (µ̂bg, σ̂

2
bg)← EstimateBackgroundMeanValueAndVariance()

2: Ii,j ← max(Ii,j − µ̂bg, 0)
3: M ← create a Max-Tree representation of I.
4: SignificantNodes(M, nodeTest, αnodes, g, σ̂

2
bg).

5: FindObjects(M).
6: MoveUp(M,λ, g, σ̂2

bg).

Fig. 3: Fragmented simulated object. Significance test 3 (left), test 4 (middle)
and SExtractor (right). The pixels of the object have the value 1.5, close to the
SExtractor threshold. Background is 0. Gaussian noise is added with σ = 1.

– Our background and noise root mean square estimates are used. This al-
ready improves the segmentation of SExtractor with respect to the original
estimate of SExtractor, that correlates too much with objects.

– DETECT MINAREA = 3. Default in SExtractor 2.19.5.
– FILTER NAME = default.conv.
– DETECT THRESH = 1.575σ above the local background. The default thresh-

old of 1.5 is changed to make the expected false positives similar to signif-
icance test 4 for noise-only images. Expected false positives per image is
approximately 0.38 based on the results of 1000 simulated noise images.

While there is no guarantee that these settings are optimal, our comparison
gives an impression of the performance of our method. A more comprehensive
comparison test is required.

Object fragmentation Another source of false positives is fragmentation of objects
due to noise. An example is shown in Fig. 3. Fragmentation appears to happen
in relatively flat structures and the chance is increased if different parts of the
structure are thinly connected. If one pixel connects two parts, the variation
in value due to noise can make a deep cut. In the case of the threshold used
by SExtractor, fragmentation is severe if the object values are just below the
threshold. The expected number of false positives due to fragmentation for the
given data set is unknown. Most images do not clearly show fragmented objects.
An image where it does happen is displayed in Fig. 4. While the SExtractor
parameter CLEAN PARAM can be changed to prevent this from happening, it is
left to the default as it has a negative effect on the number of objects detected
and it causes fragmentation in this image only.

8 The final publication is available at link.springer.com.
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Fig. 4: Fragmentation of an object. Significance test 4 (left) and SExtractor
(right). Crop section of fpC-002078-r1-0157.fits.

(a) (b) (c) (d) (e) (f)

Fig. 5: MTObjects finds more nested objects. Crop of
fpC-003804-r5-0192.fits: (a) original image; (b) significance test 4; (c)
SExtractor. Crop of fpC-001332-r4-0066.fits: (d) original image; (e)
significance test 4; (f) SExtractor.

Object count All the significance tests were compared against each other and
SExtractor. The significance test 4 returns a larger number of objects in about
100% of the images in the dataset w.r.t. significance test 1 and 2 and in about
70% w.r.t. significance test 3 and SExtractor. After inspection of the results, we
noticed that MTObjects detects more objects nested in larger objects (galaxies),
when the pixel values of the nested objects are above the SExtractor’s threshold.
Examples are shown in Fig. 5. This is explained by the fact that every node in
the Max-Tree is used, while SExtractor uses a fixed number of sub-thresholds. A
question is if the better detection of nested objects can explain the performance
of significance test 4 compared to SExtractor. To answer that, the data set is
limited to smaller objects. This is done by making a sorted area list of the largest
connected component of each image at the threshold used by SExtractor. The
performance of significance test 4 and SExtractor is now indeed similar: it means
that the difference in the total number of all the objects found in the images
is explained by the number of nested object detections. We tested then how
significance test 4 performs in the case of densely spaced overlapping objects.
When two identical objects overlap, one of the nodes marked as object has a lower
power or powerAlt value on average. If overlapping objects are close enough to
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Fig. 6: Comparison of objects with faint extended regions; (a,b,c) crop of
fpC-003903-r2-0154.fits: (a) original image; (b) significance test 4; (c) SEx-
tractor; (d,e,f) crop of fpC-004576-r2-0245.fits: (d) original image; (e) sig-
nificance test 4; (f) SExtractor; (g,h,i) crop of fpC-004623-r4-0202.fits: (g)
original image; (h) significance test 4; (i) SExtractor.

each other and at SExtractor’s threshold they are still detected as separate
objects, MTObjects could fail to detect them as separate objects. A grid filled
with small stars is generated with the IRAF software. The magnitude is set to
−0.2 to make objects barely detectable when noise is added. The diameter of
objects is 3 pixels (full width at half maximum). The background equals 1000
at every pixel and the gain is 1. Gaussian noise is added. In this case of densely
spaced objects, SExtractors detects a number of stars closer to the actual number
than MTObjects with significance test 4.

Faint structures The parameter λ used in MoveUp is set to 0.5 without adding
false positives, which makes detecting fainter structures easier. It is possible to
lower it further at the price of more noise included in the segmentation. Object
deblending by SExtractor does not always work well if objects do not have a
Gaussian profile (Fig. 6).

Dust lanes and artifacts Dust lanes as in Fig. 7 and artefacts as in Fig. 8 are also
a source of false positives. In Fig. 7(f), the galactic core is clearly split due to
dust. Fig. 8(a)(b)(c) could represent an artefact or a vertical cut-off. Refraction
spikes shown in Fig. 8(d)(e)(f) can also cause false positives as in the wave-like
shape in Fig 8(f).

Run times The timer is started before background estimation and is stopped
after object classification in SExtractor and after executing MoveUp in MTO-
bjects. The amount of time spent on classification in SExtractor is unknown.
MTObjects does not perform any classification. Tests were done on an AMD

10 The final publication is available at link.springer.com.
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(a) (b) (c) (d) (e) (f)

Fig. 7: Dust lanes. Crop of fpC-004623-r4-0202.fits: (a) original image; (b)
significance test 4; (c) SExtractor. Crop of fpC-001739-r60308.fits: (d) orig-
inal image; (e) significance test 4; (f) SExtractor.

(a) (b) (c) (d) (e) (f)

Fig. 8: Artefacts. Crop of fpC-002326-r4-0174.fits:(a) original image; (b) sig-
nificance test 4; (c) SExtractor. Crop of fpC-001345-r3-0182.fits: (d) original
image; (e) significance test 4; (f) SExtractor.

Phenom II X4 955. SExtractor is typically 3.6 times faster than MTObjects,
but it takes longer time for images that have many pixel values above the fixed
threshold. MTObjects is more constant in run time.

6 Conclusions and future work

The Max-Tree method (MTObjects) performs better at extracting faint parts
of objects compared to state-of-the-art methods like SExtractor. The sensitivity
increases with object size. MTObjects appears to be slightly worse in case of
densely spaced and overlapping objects, like globular clusters. When an object
is defined to have a single maximum pixel value, excluding maxima due to noise,
MTObjects is better at finding nested objects. Every possible threshold is tested
in MTObjects, whereas SExtractor is bound to a fixed number of thresholds.
Deblending objects appears to be better in MTObjects when there is a large
difference in size and objects do not have a Gaussian profile. Otherwise, one
of the objects will be considered as a smaller branch by MTObjects. Too many
pixels are assigned arbitrarily to a single object. The SExtractor method of fitting
Gaussian profiles makes more sense in this case and allows for a more even split
in pixels. This method could be added as postprocessing step to MTObjects.

The power attribute was initially chosen because in the non-filtered case it has
a known scaled χ2 distribution. Better attribute choices could be investigated.
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Deblending similar sized objects can be improved. Nested significant connected
components can represent the same object. The current choice, controlled by λ
in MoveUp is not ideal. The threshold looks too high for large objects and too
low for small objects. Parameter λ could be made variable and dependant on
the filter, connectivity and node attributes used. If other noise models are used
in other data sets, significance tests should be adjusted accordingly. The degree
of smoothing applied that helps to avoid fragmentation could be further inves-
tigated. Currently, the rejection boundaries are approximated by simulations
which must be recomputed for every filter and significance level. Knowing the
exact distributions will speed up this phase.
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