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Abstract. In this paper, we explore the possibility to use 2D pattern spectra as
suitable feature vectors in galaxy classification tasks. The focus is on separating
mergers from projected galaxies in a data set extracted from the Sloan Digital Sky
Survey Data Release 7. Local pattern spectra are built in parallel and are based on
an object segmentation obtained by filtering a max-tree structure that preserves
faint structures. A set of pattern spectra using size and Hu’s and Flusser’s im-
age invariant moments information is computed for every segmented galaxy. The
C4.5 tree classifier with bagging gives the best classification result. Mergers and
projected galaxies are classified with a precision of about 80%.
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1 Introduction

Nowadays, astronomy, as well as many other scientific disciplines, has to face the prob-
lem of analysing the burden of data that are produced by modern instrumentation and
tools. In particular, sky surveys like the Sloan Digital Sky Survey [1] (SDSS) contain
hundreds of millions of objects. Finding and classifying the relevant objects, mostly
stars or galaxies, cannot be done manually. The classification of the morphologies of
galaxies is not a trivial task. Parametrized models [14], non-parametric approaches [11]
and crowd-sourcing projects such as GalaxyZoo [10] are used for galaxy classification.
Commonly used morphological classes are elliptical, spirals and mergers. The galax-
ies of the latter type are irregular and asymmetrical galaxies often connected by faint
filaments of dust or gases, whose length and shape varies according to the stage of the
merging. Parametrized models assume that the galaxies show a predefined light distri-
bution and they are not irregular. Crowd-sourcing takes time and if a different classi-
fication class arise, users must be asked again to give their feedback. Non-parametric
approaches are independent of any assumption and are often effectively combined with
machine learning techniques [2, 11].

In our work, we want to distinguish mergers from other galaxies that could look
close to each other due to a projection effect but are not interacting. They are referred
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(a) 2D image (b) Peak components (c) Max-Tree

Fig. 1: A grey-scale 2D image with intensities from 0 to 90, its peak components P kh at
intensity h and the corresponding max-tree nodes Ckh .

to as projected or overlapping galaxies. We apply a non-parametric approach and inves-
tigate if a tool from mathematical morphology can be used for classifying galaxies: the
pattern spectrum. Pattern spectra were introduced by Maragos in [12]. A pattern spec-
trum can be defined as an aggregated feature space that shows how much image content
is present in the image components that satisfy certain classes of attributes. It represents
the distribution of image details over those classes. Experiments with 2D pattern spectra
using size and shape classes showed that they work effectively in pattern recognition
and classification tasks on popular data sets [21]. Image invariant moments from Hu [9]
and Flusser [7] have also been applied successfully to many pattern recognition tasks,
ranging from satellite imagery to character recognition. The term local pattern spectra
is used when pattern spectra are computed for every segmented object and not on the
image as a whole. In this paper, we selected a dataset from SDSS Data Release 7 con-
taining 196 merging and overlapping galaxies. The method in [20] is used to segment
the galaxies and retain the faint tidal structures typical of mergers. Local pattern spectra
of size and image moment invariants are created for each galaxy. Sets of 2D local pat-
tern spectra are computed in parallel, modifying a parallel algorithm presented in [15].
Such collection of pattern spectra is used as feature vector in C4.5, a decision tree clas-
sifier. Section 2 reviews the segmentation method, Section 3 and Section 4 describe the
moment invariants used and define the local pattern spectrum. In Section 5 and Sec-
tion 6 show the experiments performed with different pattern spectra and the speed
performance of the parallel algorithm. Mergers and projected galaxies in the dataset are
correctly classified in about 80% of the cases.

2 Max-tree object segmentation

Any grey-scale image can be represented as a set of connected components, that are
groups of pixels path-wise connected and with the same intensity, according to the clas-
sical definition of connectivity [18]. There being an ordering in the image intensities,
the connected components can be nested in a hierarchical tree structure, namely a max-
tree [17]. Every node in the tree corresponds to a peak component, which is a connected
component at a given intensity level in the image. The leaves of the tree represent the
local maxima of the image. Fig. 1b illustrates the hierarchy of peak components at

2 The final publication is available at link.springer.com.
DOI: 10.1007/978-3-319-23117-4 11.



(a) Original image (log scaled) (b) Segmentation by SExtractor (c) Max-Tree segmentation

Fig. 2: (a) original image with a galaxy whose protruding filament and outer boundary
are segmented better in by our method [20] in (c) than by SExtractor in (b).

different intensities h for the image in Fig. 1a. The arrows in Fig 1c represent parent-
child relationships that link the nested peak components. Useful measures related to the
components can be computed efficiently while the max-tree is being built. The node
structure is augmented with the attributes that can be used to identify the nodes that
would possibly belong to objects of interest. In the specific case of astronomical im-
ages, in [20] we proposed a novel method that performs astronomical object detection
using the max-tree structure. It starts with estimating the background in the image look-
ing for tiles devoid of objects. After the background is subtracted, a max-tree is built.
A statistical attribute filtering [5] is used. It is based on the expected noise distribu-
tion in the image compared with the distribution of the power attribute, as a function
of its area. It selects which nodes of the tree are likely to belong to objects and which
nodes are due to noise. The method showed an improved segmentation with respect to
Source Extractor [3] (SExtractor), especially on faint extended sources, as in Fig. 2.
The background estimate of SExtractor often correlates with astronomical objects. This
is an issue in the case of structure close to the background level. If such structures are
considered background, there is no threshold value able to identify them. On top of that,
a fixed threshold above its background estimate is used to identify objects on a highly
quantized version of the image, without considering noise and object properties. We
refer to [20] for more examples and a detailed explanation of the differences between
SExtractor and our solution.

3 Moments

Moment invariants are properties used to characterise images, for classification and pat-
tern recognition tasks. In this paper, moment invariants are computed through geometric
(raw) moments, for each connected component rather on the image as a whole. Let us
define a component at a given intensity level as a binary image f(x, y), where the back-
ground is made of the pixels that do not belong to the component. The moment of order
p+ q of f is defined as:

mpq(f) =
∑

(x,y)∈f

xpyqf(x, y). (1)
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Raw moments can be transformed in central moments by using the coordinates of the
component centroids x̄ = m10/m00 and ȳ = m01/m00 as follows:

µpq =
∑

(x,y)∈f

(x− x̄)p(y − ȳ)qf(x, y). (2)

Central moments are translation invariant. Normalised central moments are scale in-
variant moments derived from central moments, defined as ηpq = µpq/µ

α
00, with α =

p+ q/2 + 1. Hu [9] derived seven two dimensional descriptors suitable for 2D images
(or components). The seven invariant moments were demonstrated to be translation,
scale and rotation invariant. They are defined in terms of normalised central moments
below:

φ1 = η20 + η02
φ2 = (η20 − η02)2 + 4η211
φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)
φ5 = (η30 − 3η12)(η30 + η12))(η30 + η12)2 − 3(η21 + η03)2) + (3η21 − η03)(η21 +
η03)(3(η30 + η12)2 − (η21 + η03)2)

φ6 = (η20 − η02)((η30 + η12)2 − (η21 + η03)2) + 4η11(η30 + η12)(η21 + η03)
φ7 = (3η21 − η03)(η30 + η12)((η30 + η12)2 − 3(η21 + η03)2) + (3η12 − η30(η21 +
η03)(3(η30 + η12)2) − (η21 + η03)2)

Flusser in [7] and Flusser and Suk in [6] showed that Hu’s moment invariants are de-
pendent and incomplete. It was pointed out that in pattern recognition problems, it is
important to work with independent descriptors because they grant the same discrim-
inative effect at the lowest computational cost, especially in high dimensional feature
spaces. There are six Flusser’s invariant moments that form a complete and independent
set. They correspond to a subset of five Hu’s moments (ψ1 = φ1, ψ2 = φ4, ψ3 = φ6,
ψ5 = φ5, ψ6 = φ7) with the addition of ψ4:

ψ4 = η11((η30 + η12)2 − (η03 + η221)) − (η20 − η02)(η30 + η12)(η03 + η21)

The six Flusser invariants used are of the second and third order. The first moment
invariant ψ1 is know also as the normalized moment of inertia and it can be used as a
measure of the elongation of a component. We recall here that the moments ψ4 and ψ6

are skew invariant in the sense that they can separate between mirrored components,
that it is not always desirable. As in [21], we modified the segmentation algorithm to
compute raw moments for every node. The moment invariants can be easily computed
from raw moments when the spectra are created. In such way, it is possible convey in the
pattern spectrum of an object the information coming from the moment invariants for
all the components that a galaxy is made of. Hu’s and Flusser’s moment invariants are
used in the computation of the pattern spectrum of every galaxy, previously segmented
with the algorithm illustrated in Section 2.

4 Parallel local pattern spectra

Without a hierarchical image representation like the max-tree, pattern spectra are com-
puted using a number of morphological openings, with structuring elements of increas-
ing sizes. The difference between two consecutive openings is an image that contains
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Type of Moments Invariants Area of components Dimension of PS

Hu φ1, φ2, φ3, φ4, φ5, φ6, φ7 >= 1 7x7
Flusser ψ1, ψ2, ψ3, ψ4, ψ5, ψ6 >= 4 14x14

Flusser* ψ1, ψ2, ψ3, ψ5 30x30

Table 1: Pattern spectra with different settings are used. The first two columns illustrate
three sets of moments considered; the third column shows that components with area
larger than or equals to 1 and 4 pixels were used for different pattern spectra; the fourth
column shows the number of bins used for area and moment invariant values.

the structures (connected components) having a size in the range given by the areas
of the two structuring elements. The sum of the pixel intensities in the difference im-
age, gives the amount of image detail for those components. In this case, the pattern
spectrum is a 1D histogram where each bin corresponds to a range of areas, called size
pattern spectrum. Max-trees can be used to compute the pattern spectra efficiently and
independently of the structuring element used to sample the image. The nodes of the
tree contain the exact area of every component without explicitly computing morpho-
logical openings. On top of that, they keep track of useful attributes such as moments,
for all the components. Multidimensional pattern spectra can be obtained by binning the
connected components not only according to their area but also to some other attribute.
For example, a measure of the elongation of a component given by the first Hu’s invari-
ant moment was used in [21] was used to generate a 2D shape-size pattern spectra. A
pattern spectrum is called local when it is computed on a segmented object and not on
the whole image. After the max-tree is built, for each node visited in arbitrary order,
the bin of the spectrum in which a given attribute value falls is chosen. Once the correct
bins are identified, the product between the area of the component and the intensity
difference with its parent node in the tree is added at that location. The computation
of the pattern spectra can be parallelized applying a technique similar to the one pre-
sented in [15], tested on high resolution remote sensing images. When the pixels are
partitioned among the threads of the parallel program, each thread handles the nodes
of the tree falling under its partition corresponding to those pixels. The difference is
that now a pattern spectrum for every object must be stored, whereas in [15] a single
pattern spectrum was used for the whole image. Every thread stores now a number of
pattern spectra equals to the number of objects found. The pattern spectra values are
computed in every thread and the partial results are merged at the end. The output is a
list of pattern spectra, one for every object in the image.

5 Classifying galaxies: the experiment

We investigate if 2D local pattern spectra that use invariant moments show statisti-
cally significant differences to distinguish merging from projected galaxies. The images
used are obtained from the SDSS Data Release 7 [1]. The data set used consists of 98
monochrome r−band images containing a pair of close-by galaxies each for a total of
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98 mergers and 98 overlapping galaxies. The image resolution is 2048x1489 pixels.
Galaxies classified as interacting were selected from the Arp’s Atlas of Peculiar Galax-
ies, whereas the projected galaxies were obtained from the classification of GalaxyZoo.
The Weka 3.6.12 software package [8] and its implementation of the C4.5 decision tree
classifier algorithm [16] were used to perform the experiments. The feature vector used
as input by the C4.5 algorithm is a collection of 2D pattern spectra: one for each mo-
ment invariant. For every local 2D pattern spectrum, a dimension shows the bins for the
area values of the components. The area is normalized dividing by the total size of the
segmented galaxy. For every galaxy, the node of the tree that corresponds to its compo-
nent of lowest intensity is normalised to have area equal 1. It represents the perimeter of
the galaxy. Early tests showed that a logarithmic binning of area gives better results: it is
desirable to have finer bins for lower values of area. The other dimension of the pattern
spectrum refers to the bins for the moment invariant values. A 2D pattern spectrum is
created for every moment invariant. For example, in the case of Hu’s invariants, a set of
seven 2D pattern spectra will be used as feature vector. The moment invariants tested
are summarised in the first two columns of Table 1 and reported below.

Hu: The seven Hu’s moment invariants.
Flusser: The six Flusser’s moment invariants of the second and third order.
Flusser*: A non-skew invariant subset of the Flusser’s invariants.

The value of such invariants was computed for all the components belonging to the
196 objects in the dataset. In total, there are about 2.5 · 106 components for all the
196 objects. As reported in the third column in Table 1, tests were also performed
discarding the components smaller than 4 pixels: about 2.0·106 nodes were left. Binning
of moment values was chosen so that the same number of components falls in each bin.
Moment invariant and area values were binned in 7, 14 and 30 intervals, as reported
in the last column of Table 1. The feature vector of every galaxy is made of a number
2D pattern spectra equal to the number of moment invariants used. For example, in
the case of Hu’s moment invariants, seven pattern spectra are calculated, each one with
dimension, for example, 7x7 or 30x30. In this case, every galaxy is described by a 7x49
or 30x210 feature vector. As mentioned in Section 4, once the correct location in the
pattern spectrum is identified given an area and a moment invariant value, the area of the
component is multiplied by the intensity difference with its parent node: such product
is added at that location in the spectrum. As a further test, a normalised version of the
pattern spectra is computed: the product of area of a component and intensity difference
is normalized by dividing for the total area of the galaxy. In short, a total of 36 different
kinds of feature vectors were tested by composing three types of moment invariants,
components with area larger than or equal to 1 and 4 pixels, three different binnings
and lastly enabling or not normalization of the pattern spectra values.

6 Classification results and speed performance

The C4.5 classifier in Weka software package was tested in three variants: standard,
with adaptive boosting (AdaBoost) and with bagging, commonly used techniques to
improve decision tree classifiers. The results are shown from Table 2 to Table 5. The
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Moments Dim. of PS C4.5 (%) Boosting (%) Bagging (%)

Hu 7x7 71.41 76.34 79.64
Hu 14x 14 71.88 73.65 78.11
Hu 30x30 64.71 67.80 72.80

Flusser 7x7 72.48 78.05 81.00
Flusser 14x14 72.00 72.51 76.54
Flusser 30x30 67.83 68.41 70.53

Flusser* 7x7 74.93 78.17 79.87
Flusser* 14x14 71.87 72.61 75.56
Flusser* 30x30 67.70 67.24 70.50

Table 2: Percentages of correctly classified instances. Pattern spectra were normalized
and components with area >=1 were processed.

Moments Dim. of PS C4.5 (%) Boosting (%) Bagging (%)

Hu 7x7 74.52 78.33 78.88
Hu 14x 14 70.67 73.86 77.33
Hu 30x30 66.83 66.15 71.44

Flusser 7x7 71.36 77.21 79.60
Flusser 14x14 71.17 73.23 77.92
Flusser 30x30 66.91 67.72 72.04

Flusser* 7x7 73.62 77.26 79.54
Flusser* 14x14 72.51 72.41 77.46
Flusser* 30x30 66.58 65.72 71.82

Table 3: Percentages of correctly classified instances. Pattern spectra were normalized
and components with area >=4 were processed.

last three columns of every table show the percentage of correctly classified instances
(galaxies) for the three variants. Every value is the average result got over 10 repetitions
of 10-fold cross validation, for a total of 100 folds. The tables refer to the four cases
that originate from the analysis of components larger than or equal to 1 or 4 pixels and
normalizing or not the pattern spectra values. The average standard deviation of all the
runs is 9.92 for the standard C4.5 and 8.90 for the C4.5 with bagging. The best results
are achieved with bagging enabled in Table 2, Table 3 and Table 5 and with boosting in
Table 4. In every table, the three highest percent values are underlined. We notice that
there is no big difference among the correct predictions over the tables. The two highest
percentages of correct classification of objects as merging and overlapping galaxies are
81.00% in Table 2 for the Flusser set normalized, and 80.89% with the Flusser set not
normalized in Table 4, using 7x7 pattern spectra. In general, better results are got when a
smaller number of bins is chosen and when all the components are considered, not only
those larger than 3 pixels. This could be explained by the fact that merging galaxies
often show faint structures made of small dust-like particles, that result in an increased
number of small components. Smaller components might convey a kind of information
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Moments Dim. of PS C4.5 (%) Boosting (%) Bagging (%)

Hu 7x7 71.64 80.08 79.11
Hu 14x 14 71.88 73.65 78.11
Hu 30x30 70.61 70.06 76.63

Flusser 7x7 73.15 80.89 79.79
Flusser 14x14 72.00 72.51 76.54
Flusser 30x30 70.56 69.21 73.17

Flusser* 7x7 74.42 80.13 78.70
Flusser* 14x14 71.87 72.61 75.56
Flusser* 30x30 69.00 68.38 72.61

Table 4: Percentages of correctly classified instances. Pattern spectra were not normal-
ized and components with area >=1 were processed.

Moments Dim. of PS C4.5 (%) Boosting (%) Bagging (%)

Hu 7x7 74.52 78.33 78.88
Hu 14x 14 70.67 73.86 77.33
Hu 30x30 65.67 68.96 74.41

Flusser 7x7 71.36 77.21 79.60
Flusser 14x14 71.17 73.23 77.92
Flusser 30x30 67.02 66.58 73.66

Flusser* 7x7 73.62 77.26 79.54
Flusser* 14x14 72.51 72.41 77.46
Flusser* 30x30 67.16 67.31 74.68

Table 5: Percentages of correctly classified instances. Pattern spectra were not normal-
ized and components with area >=4 were processed.

that is absent in projected galaxies. Normalizing the pattern spectra values seems to
bring little benefit. The main differences are due to the smaller feature space having a
lower number of bins and to the area of the components considered. A larger decrease
of correct classifications was expected with the normalization of the pattern spectra than
the one observed. In principle, normalization would make the method to account less
for the existing size differences present in some images of the dataset between mergers
and overlapping galaxies. However, using scale-invariant moment invariants can have
counteracted this effect. Fig. 3a and Fig. 3b show two cases of correctly classified
mergers and projected galaxies, respectively. Fig. 3c shows the large merger Messier
49. Its companion galaxy is a dwarf irregular galaxy, cropped out of the picture. In this
figure, it is interesting to notice that the smaller galaxy is correctly classified as over-
lapping, in spite of being also visually linked to the wide halo. Fig. 3d shows instead
two misclassified galaxies: both the galaxies are classified as mergers, but they are ac-
tually overlapping. Surely, the small area of the objects in Fig. 3d does not help the
classification. Fig. 4a shows two (or more) merging galaxies at a very late stage. It is
very difficult to define the boundaries of the galaxies involved and the image looks like

8 The final publication is available at link.springer.com.
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(a) (b)

(c) (d)

Fig. 3: (a) and (b) show correctly classified merging and projected galaxies, respec-
tively; in (c) the small galaxy is correctly classified as overlapping; in (d) the two galax-
ies are overlapping but they are classified as mergers. Separate objects are segmented
in different colours. The black rectangles highlight which objects we are referring to.

over-segmented. The larger galaxy is correctly classified as a merger, but the compan-
ion is not clearly defined. The same happens for the overlapping galaxies in Fig. 4b.
The large one is correctly classified, the smaller one is not. In general, it is of course
difficult to classify objects that span a few pixels. The classification could be possibly
improved with a better separation among close-by objects. We noticed that, during the
segmentation, it can happen that too many pixels are assigned to the larger objects, thus
reducing the amount of available information for the smaller galaxies. In a previous
thesis work [19] compiled at the Kapteyn Astronomical Institute of Groningen, multi-
scale connectivity [4] was used to create feature vectors made of collection of 1D size
pattern spectra at several scales. Such pattern spectra were not local: a single pattern
spectrum was produced from every image and object segmentation was not performed.
Running the same algorithm of [19] on our dataset gave a percentage of correctly clas-
sified objects of 77.81% with C4.5 tree classifier with bagging. The main issue with this
solution was that several (hundreds) astronomical objects are present in every image: it
is not very clear what is being classified if objects are not segmented and global pattern
spectra are used. On the contrary, classification based on segmented objects guarantees
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(a) (b)

Fig. 4: (a) last stage of a merging phase with small segmented structures and (b) a
small projected galaxy made of a few pixels. In both cases, classification is a difficult
task. Separate objects are segmented in different colours. The black rectangles highlight
which objects we are referring to.

a more reliable and truthful outcome and evaluation of the results. We are not aware of
other approaches that try to distinguish mergers from overlapping galaxies, since the
focus of most of the papers is rather on classifying the different morphologies.

The parallel algorithm to compute local pattern spectra was tested for speed per-
formance. It was implemented in C language with POSIX Threads. A shared-memory
Dell R815 Rack Server with four 16-core AMD Opteron processors and RAM mem-
ory of 512GB was used in the tests. Table 6 at row 1 and 3 shows the run-time and
the speed-up value to compute the pattern spectra of hundreds of stars and galaxies in
each of the 98 images, with 30x30 pattern spectra. Flusser’s and Hu’s moments were
used. Run-time decreases from almost 7 minutes to 1 minute and a half on 8 threads. In
general, the images in the SDSS are small, about 3Mpx resolution and the performance
is affected more by the time spent merging the results of the different threads than by
the time spent in the actual computation of moments and pattern spectra. Moreover,
load balance is not optimal: in case the partition assigned to a thread contains a small
number of components or any object at all, the thread will have a small computational
work. We decided then to test the parallel computation of 2D local pattern spectra on a
large radio cube with 360x360x1464 resolution, named WSRT (Westerbork Synthesis
Radio Telescope, courtesy of P. Serra). It contains radio emission values from galactic
sources. The results are shown in Table 6, at row 2 and 4. The time to compute the
pattern spectra for the objects identified (about five hundred) goes from 4 minutes on
a single threads to 34 seconds on 32 threads. Load balance issues are still evident in
the speed-up computation, though. We recall here that an important step of the pipeline
that leads to object classification is also the segmentation of astronomical objects. In
the case of the WSRT cube, segmentation was done in parallel, as in [13]: run-times
went from 11 minutes on single thread to 2 minutes and 10 seconds on 16 threads, on
the same Dell machine.

10 The final publication is available at link.springer.com.
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Test / Threads: 1 2 4 8 16 32 64

Run-time SDSS (s) 421.47 227.09 130.32 91.53 104.05 136.62 258.28
Run-time WSRT (s) 242.13 156.91 100.01 46.15 40.63 34.81 46.18
Speed-up SDSS 1.00 1.86 3.23 4.60 4.05 3.08 1.63
Speed-up WSRT 1.00 1.54 2.42 5.25 5.96 6.96 5.24

Table 6: Execution times (in seconds) and speed-up values obtained after computing in
parallel 2D local pattern spectra, for the 98 SDSS images and the WSRT cube, with
30x30 pattern spectra for each object in the images.

7 Conclusions and future work

The use of collections of local 2D pattern spectra as feature vectors suitable for classifi-
cation of astronomical object looks promising. Experiments were made on a dataset of
196 galaxies from the SDSS Data Release 7. The goal was to classify if two close-by
galaxies present in each image were either merging or overlapping. The galaxies were
automatically segmented by our own segmentation algorithm. A set of local 2D pattern
spectra, binned using the size of the components in the segmented galaxies and image
moment invariant information is computed in parallel. The Weka C4.5 tree classifier
with bagging gave the best classification results: the percentage of correctly classified
instances is about 80%. In future work, other attributes could be investigated, for ex-
ample shape measures derived from moments. Other classifiers should also be tested.
Neural networks approaches as in [2] look promising. Further improvements to object
segmentation following more accurately the brightness profiles could possibly enrich
the quality of the pattern spectra and improve classification.

References

1. Abazajian, K.N., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Allende Prieto, C.,
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