References

BB03

Frank Bickenbach and Eckhardt Bode. Evaluating the Markov property in studies of economic convergence. International Regional Science Review, 26(3):363–392, 2003. URL: https://doi.org/10.1177/0160017603253789, doi:10.1177/0160017603253789.

Bie11

Torsten Biemann. A transition-oriented approach to optimal matching. Sociological Methodology, 41(1):195–221, 2011. URL: https://doi.org/10.1111/j.1467-9531.2011.01235.x, arXiv:https://doi.org/10.1111/j.1467-9531.2011.01235.x, doi:10.1111/j.1467-9531.2011.01235.x.

Chr05

David Christensen. Fast algorithms for the calculation of kendall’s τ. Computational Statistics, 20(1):51–62, Mar 2005. URL: https://doi.org/10.1007/BF02736122”, doi:10.1007/BF02736122.

DAR12

Juan C Duque, Luc Anselin, and Sergio J Rey. The max-p-regions problem*. Journal of Regional Science, 52(3):397–419, 2012.

FSZ04

John P. Formby, W. James Smith, and Buhong Zheng. Mobility measurement, transition matrices and statistical inference. Journal of Econometrics, 120(1):181–205, 2004. URL: http://www.sciencedirect.com/science/article/pii/S0304407603002112, doi:https://doi.org/10.1016/S0304-4076(03)00211-2.

KR18

Wei Kang and Sergio J. Rey. Conditional and joint tests for spatial effects in discrete Markov chain models of regional income distribution dynamics. The Annals of Regional Science, Jan 2018. URL: https://doi.org/10.1007/s00168-017-0859-9, doi:10.1007/s00168-017-0859-9.

KS67

John G. Kemeny and James Laurie Snell. Finite markov chains. Van Nostrand, 1967.

KKK62

S. Kullback, M. Kupperman, and H. H. Ku. Tests for contingency tables and Markov chains. Technometrics, 4(4):573–608, 1962. URL: http://www.jstor.org/stable/1266291, doi:10.2307/1266291.

PTVF07

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes: the art of scientific computing. Cambridge Univ Pr, Cambridge, 3rd edition, 2007.

Rey01

Sergio J. Rey. Spatial empirics for economic growth and convergence. Geographical Analysis, 33(3):195–214, 2001. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.2001.tb00444.x, doi:10.1111/j.1538-4632.2001.tb00444.x.

Rey04

Sergio J. Rey. Spatial dependence in the evolution of regional income distributions. In A. Getis, J. Múr, and H. Zoeller, editors, Spatial econometrics and spatial statistics, pages 193–213. Palgrave, Hampshire, 2004.

Rey14

Sergio J. Rey. Fast algorithms for a space-time concordance measure. Computational Statistics, 29(3-4):799–811, 2014. URL: https://doi.org/10.1007/s00180-013-0461-2, doi:10.1007/s00180-013-0461-2.

Rey16

Sergio J. Rey. Space–time patterns of rank concordance: local indicators of mobility association with application to spatial income inequality dynamics. Annals of the American Association of Geographers, 106(4):788–803, 2016. URL: https://doi.org/10.1080/24694452.2016.1151336, doi:10.1080/24694452.2016.1151336.

RAF+11

Sergio J. Rey, Luc Anselin, David C. Folch, Daniel Arribas-Bel, Myrna L. Sastré Gutiérrez, and Lindsey Interlante. Measuring spatial dynamics in metropolitan areas. Economic Development Quarterly, 25(1):54–64, Nov 2011. URL: http://dx.doi.org/10.1177/0891242410383414, doi:10.1177/0891242410383414.

RKW16

Sergio J. Rey, Wei Kang, and Levi Wolf. The properties of tests for spatial effects in discrete Markov chain models of regional income distribution dynamics. Journal of Geographical Systems, 18(4):377–398, 2016. URL: http://dx.doi.org/10.1007/s10109-016-0234-x, doi:10.1007/s10109-016-0234-x.

RMA11

Sergio J. Rey, Alan T. Murray, and Luc Anselin. Visualizing regional income distribution dynamics. Letters in Spatial and Resource Sciences, 4(1):81–90, 2011. URL: https://doi.org/10.1007/s12076-010-0048-2, doi:10.1007/s12076-010-0048-2.