Conference paper Open Access

CMU's Machine Translation System for IWSLT 2019

Srinivasan, Tejas; Sanabria, Ramon; Metze, Florian


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Srinivasan, Tejas</dc:creator>
  <dc:creator>Sanabria, Ramon</dc:creator>
  <dc:creator>Metze, Florian</dc:creator>
  <dc:date>2019-11-02</dc:date>
  <dc:description>In Neural Machine Translation (NMT) the usage of sub-􏰃words and characters as source and target units offers a simple and flexible solution for translation of rare and unseen􏰃 words. However, selecting the optimal subword segmentation involves a trade-off between expressiveness and flexibility, and is language and dataset-dependent. We present Block Multitask Learning (BMTL), a novel NMT architecture that predicts multiple targets of different granularities simulta- neously, removing the need to search for the optimal seg- mentation strategy. Our multi-task model exhibits improvements of up to 1.7 BLEU points on each decoder over single-task baseline models with the same number of parameters on datasets from two language pairs of IWSLT15 and one from IWSLT19. The multiple hypotheses generated at different granularities can also be combined as a post-processing step to give better translations.</dc:description>
  <dc:identifier>https://zenodo.org/record/3525531</dc:identifier>
  <dc:identifier>10.5281/zenodo.3525531</dc:identifier>
  <dc:identifier>oai:zenodo.org:3525531</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.5281/zenodo.3525530</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/iwslt2019</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>CMU's Machine Translation System for IWSLT 2019</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
157
86
views
downloads
All versions This version
Views 157157
Downloads 8686
Data volume 72.6 MB72.6 MB
Unique views 154154
Unique downloads 8080

Share

Cite as