Conference paper Open Access

Samsung's System for the IWSLT 2019 End-to-End Speech Translation Task

Potapczyk, Tomasz; Przybysz, Pawel; Chochowski, Marcin; Szumaczuk, Artur

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Potapczyk, Tomasz</dc:creator>
  <dc:creator>Przybysz, Pawel</dc:creator>
  <dc:creator>Chochowski, Marcin</dc:creator>
  <dc:creator>Szumaczuk, Artur</dc:creator>
  <dc:description>This paper describes the submission to IWSLT 2019 End- to-End speech translation task by Samsung R&amp;D Institute, Poland. We decided to focus on end-to-end English to German TED lectures translation and did not provide any submission for other speech tasks. We used a slightly altered Transformer architecture with standard convolutional layer preparing the audio input to Transformer en- coder. Additionally, we propose an audio segmentation al- gorithm maximizing BLEU score on tst2015 test set.</dc:description>
  <dc:title>Samsung's System for the IWSLT 2019 End-to-End Speech Translation Task</dc:title>
All versions This version
Views 548548
Downloads 418418
Data volume 43.9 MB43.9 MB
Unique views 489489
Unique downloads 385385


Cite as