Conference paper Open Access
Nguyen, Toan Q.; Salazar, Julian
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <controlfield tag="005">20200120174454.0</controlfield> <controlfield tag="001">3525484</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Amazon AWS AI</subfield> <subfield code="a">Salazar, Julian</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">345932</subfield> <subfield code="z">md5:5a6c18ef21719ddacdab79deec9a4b39</subfield> <subfield code="u">https://zenodo.org/record/3525484/files/IWSLT2019_paper_26.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-11-02</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-iwslt2019</subfield> <subfield code="o">oai:zenodo.org:3525484</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">University of Notre Dame</subfield> <subfield code="a">Nguyen, Toan Q.</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Transformers without Tears: Improving the Normalization of Self-Attention</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-iwslt2019</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>We evaluate three simple, normalization-centric changes to improve Transformer training. First, we show that pre-norm residual connections (PRENORM) and smaller initializations enable warmup-free, validation-based training with large learning rates. Second, we propose&nbsp;l2&nbsp;normalization with a single scale parameter (SCALENORM) for faster training and better performance. Finally, we reaffirm the effectiveness of normalizing word embeddings to a fixed length (FIXNORM). On five low-resource translation pairs from TED Talks-based corpora, these changes always converge, giving an average +1.1 BLEU over state-of-the-art bilingual baselines and a new 32.8 BLEU on IWSLT &#39;15 English-Vietnamese. We ob- serve sharper performance curves, more consistent gradient norms, and a linear relationship between activation scaling and decoder depth. Surprisingly, in the high-resource setting (WMT &#39;14 English-German), SCALENORM&nbsp;and FIXNORM&nbsp;remain competitive but PRENORM&nbsp;degrades performance.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3525483</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3525484</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 1,032 | 1,032 |
Downloads | 639 | 639 |
Data volume | 221.1 MB | 221.1 MB |
Unique views | 884 | 884 |
Unique downloads | 572 | 572 |