Conference paper Open Access
Nguyen, Toan Q.; Salazar, Julian
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/af91a16c-9d1c-4a50-bfe9-be29a2d488cf/IWSLT2019_paper_26.pdf" }, "checksum": "md5:5a6c18ef21719ddacdab79deec9a4b39", "bucket": "af91a16c-9d1c-4a50-bfe9-be29a2d488cf", "key": "IWSLT2019_paper_26.pdf", "type": "pdf", "size": 345932 } ], "owners": [ 50447 ], "doi": "10.5281/zenodo.3525484", "stats": { "version_unique_downloads": 576.0, "unique_views": 888.0, "views": 1037.0, "version_views": 1037.0, "unique_downloads": 576.0, "version_unique_views": 888.0, "volume": 222780208.0, "version_downloads": 644.0, "downloads": 644.0, "version_volume": 222780208.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3525484", "conceptdoi": "https://doi.org/10.5281/zenodo.3525483", "bucket": "https://zenodo.org/api/files/af91a16c-9d1c-4a50-bfe9-be29a2d488cf", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3525483.svg", "html": "https://zenodo.org/record/3525484", "latest_html": "https://zenodo.org/record/3525484", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3525484.svg", "latest": "https://zenodo.org/api/records/3525484" }, "conceptdoi": "10.5281/zenodo.3525483", "created": "2019-11-02T01:13:18.324800+00:00", "updated": "2020-01-20T17:44:54.821195+00:00", "conceptrecid": "3525483", "revision": 2, "id": 3525484, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3525484", "description": "<p>We evaluate three simple, normalization-centric changes to improve Transformer training. First, we show that pre-norm residual connections (PRENORM) and smaller initializations enable warmup-free, validation-based training with large learning rates. Second, we propose l2 normalization with a single scale parameter (SCALENORM) for faster training and better performance. Finally, we reaffirm the effectiveness of normalizing word embeddings to a fixed length (FIXNORM). On five low-resource translation pairs from TED Talks-based corpora, these changes always converge, giving an average +1.1 BLEU over state-of-the-art bilingual baselines and a new 32.8 BLEU on IWSLT '15 English-Vietnamese. We ob- serve sharper performance curves, more consistent gradient norms, and a linear relationship between activation scaling and decoder depth. Surprisingly, in the high-resource setting (WMT '14 English-German), SCALENORM and FIXNORM remain competitive but PRENORM degrades performance.</p>", "language": "eng", "title": "Transformers without Tears: Improving the Normalization of Self-Attention", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3525483" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3525484" } } ] }, "communities": [ { "id": "iwslt2019" } ], "publication_date": "2019-11-02", "creators": [ { "affiliation": "University of Notre Dame", "name": "Nguyen, Toan Q." }, { "affiliation": "Amazon AWS AI", "name": "Salazar, Julian" } ], "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3525483", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 1,037 | 1,037 |
Downloads | 644 | 644 |
Data volume | 222.8 MB | 222.8 MB |
Unique views | 888 | 888 |
Unique downloads | 576 | 576 |