Conference paper Open Access
Nguyen, Toan Q.; Salazar, Julian
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3525484"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3525484</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3525484"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Nguyen, Toan Q.</foaf:name> <foaf:givenName>Toan Q.</foaf:givenName> <foaf:familyName>Nguyen</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Notre Dame</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Salazar, Julian</foaf:name> <foaf:givenName>Julian</foaf:givenName> <foaf:familyName>Salazar</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Amazon AWS AI</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Transformers without Tears: Improving the Normalization of Self-Attention</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-11-02</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://zenodo.org/record/3525484"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3525484</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3525483"/> <dct:isPartOf rdf:resource="https://zenodo.org/communities/iwslt2019"/> <dct:description><p>We evaluate three simple, normalization-centric changes to improve Transformer training. First, we show that pre-norm residual connections (PRENORM) and smaller initializations enable warmup-free, validation-based training with large learning rates. Second, we propose&nbsp;l2&nbsp;normalization with a single scale parameter (SCALENORM) for faster training and better performance. Finally, we reaffirm the effectiveness of normalizing word embeddings to a fixed length (FIXNORM). On five low-resource translation pairs from TED Talks-based corpora, these changes always converge, giving an average +1.1 BLEU over state-of-the-art bilingual baselines and a new 32.8 BLEU on IWSLT &#39;15 English-Vietnamese. We ob- serve sharper performance curves, more consistent gradient norms, and a linear relationship between activation scaling and decoder depth. Surprisingly, in the high-resource setting (WMT &#39;14 English-German), SCALENORM&nbsp;and FIXNORM&nbsp;remain competitive but PRENORM&nbsp;degrades performance.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3525484"/> <dcat:byteSize>345932</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/3525484/files/IWSLT2019_paper_26.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 1,035 | 1,035 |
Downloads | 642 | 642 |
Data volume | 222.1 MB | 222.1 MB |
Unique views | 886 | 886 |
Unique downloads | 574 | 574 |