Conference paper Open Access
Macé, Valentin; Servan, Christophe
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Macé, Valentin</dc:creator> <dc:creator>Servan, Christophe</dc:creator> <dc:date>2019-11-02</dc:date> <dc:description>In Machine Translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a simple yet promising approach to add contextual information in Neural Machine Translation. We present a method to add source context that capture the whole document with accurate boundaries, taking every word into account. We provide this additional information to a Transformer model and study the impact of our method on three language pairs. The proposed approach obtains promising results in the English-German, English-French and French-English document-level translation tasks. We observe interesting cross-sentential behaviors where the model learns to use document-level information to improve translation coherence.</dc:description> <dc:identifier>https://zenodo.org/record/3525020</dc:identifier> <dc:identifier>10.5281/zenodo.3525020</dc:identifier> <dc:identifier>oai:zenodo.org:3525020</dc:identifier> <dc:language>eng</dc:language> <dc:relation>doi:10.5281/zenodo.3525019</dc:relation> <dc:relation>url:https://zenodo.org/communities/iwslt2019</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:title>Using Whole Document Context in Neural Machine Translation</dc:title> <dc:type>info:eu-repo/semantics/conferencePaper</dc:type> <dc:type>publication-conferencepaper</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 119 | 119 |
Downloads | 87 | 87 |
Data volume | 14.6 MB | 14.6 MB |
Unique views | 111 | 111 |
Unique downloads | 80 | 80 |