Conference paper Open Access
Macé, Valentin; Servan, Christophe
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/7c30fb05-d597-49ac-86e0-ca27f7dd1351/IWSLT2019_paper_20.pdf" }, "checksum": "md5:3a4a4614e5f77e181163dafd99370339", "bucket": "7c30fb05-d597-49ac-86e0-ca27f7dd1351", "key": "IWSLT2019_paper_20.pdf", "type": "pdf", "size": 168252 } ], "owners": [ 50447 ], "doi": "10.5281/zenodo.3525020", "stats": { "version_unique_downloads": 79.0, "unique_views": 111.0, "views": 119.0, "version_views": 119.0, "unique_downloads": 79.0, "version_unique_views": 111.0, "volume": 14469672.0, "version_downloads": 86.0, "downloads": 86.0, "version_volume": 14469672.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3525020", "conceptdoi": "https://doi.org/10.5281/zenodo.3525019", "bucket": "https://zenodo.org/api/files/7c30fb05-d597-49ac-86e0-ca27f7dd1351", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3525019.svg", "html": "https://zenodo.org/record/3525020", "latest_html": "https://zenodo.org/record/3525020", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3525020.svg", "latest": "https://zenodo.org/api/records/3525020" }, "conceptdoi": "10.5281/zenodo.3525019", "created": "2019-11-01T13:14:34.920169+00:00", "updated": "2020-01-20T16:11:45.016805+00:00", "conceptrecid": "3525019", "revision": 2, "id": 3525020, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3525020", "description": "<p>In Machine Translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a simple yet promising approach to add contextual information in Neural Machine Translation. We present a method to add source context that capture the whole document with accurate boundaries, taking every word into account. We provide this additional information to a Transformer model and study the impact of our method on three language pairs. The proposed approach obtains promising results in the English-German, English-French and French-English document-level translation tasks. We observe interesting cross-sentential behaviors where the model learns to use document-level information to improve translation coherence.</p>", "language": "eng", "title": "Using Whole Document Context in Neural Machine Translation", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3525019" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3525020" } } ] }, "communities": [ { "id": "iwslt2019" } ], "publication_date": "2019-11-02", "creators": [ { "affiliation": "QWANT RESEARCH - 7 Rue Spontini, 75116 Paris, France", "name": "Mac\u00e9, Valentin" }, { "affiliation": "QWANT RESEARCH - 7 Rue Spontini, 75116 Paris, France", "name": "Servan, Christophe" } ], "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3525019", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 119 | 119 |
Downloads | 86 | 86 |
Data volume | 14.5 MB | 14.5 MB |
Unique views | 111 | 111 |
Unique downloads | 79 | 79 |