Conference paper Open Access
Macé, Valentin; Servan, Christophe
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3525020</identifier> <creators> <creator> <creatorName>Macé, Valentin</creatorName> <givenName>Valentin</givenName> <familyName>Macé</familyName> <affiliation>QWANT RESEARCH - 7 Rue Spontini, 75116 Paris, France</affiliation> </creator> <creator> <creatorName>Servan, Christophe</creatorName> <givenName>Christophe</givenName> <familyName>Servan</familyName> <affiliation>QWANT RESEARCH - 7 Rue Spontini, 75116 Paris, France</affiliation> </creator> </creators> <titles> <title>Using Whole Document Context in Neural Machine Translation</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-11-02</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3525020</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3525019</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/iwslt2019</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>In Machine Translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a simple yet promising approach to add contextual information in Neural Machine Translation. We present a method to add source context that capture the whole document with accurate boundaries, taking every word into account. We provide this additional information to a Transformer model and study the impact of our method on three language pairs. The proposed approach obtains promising results in the English-German, English-French and French-English document-level translation tasks. We observe interesting cross-sentential behaviors where the model learns to use document-level information to improve translation coherence.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 119 | 119 |
Downloads | 87 | 87 |
Data volume | 14.6 MB | 14.6 MB |
Unique views | 111 | 111 |
Unique downloads | 80 | 80 |