Conference paper Open Access
Scarton, Scarton; Forcada, Mikel L.; Esplà-Gomis, Miquel; Specia, Lucia
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3525003</identifier> <creators> <creator> <creatorName>Scarton, Scarton</creatorName> <givenName>Scarton</givenName> <familyName>Scarton</familyName> <affiliation>Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK</affiliation> </creator> <creator> <creatorName>Forcada, Mikel L.</creatorName> <givenName>Mikel L.</givenName> <familyName>Forcada</familyName> <affiliation>Dept. Llenguatges i Sist. Inform., Universitat d'Alacant, 03690 St. Vicent del Raspeig, Spain</affiliation> </creator> <creator> <creatorName>Esplà-Gomis, Miquel</creatorName> <givenName>Miquel</givenName> <familyName>Esplà-Gomis</familyName> <affiliation>Dept. Llenguatges i Sist. Inform., Universitat d'Alacant, 03690 St. Vicent del Raspeig, Spain</affiliation> </creator> <creator> <creatorName>Specia, Lucia</creatorName> <givenName>Lucia</givenName> <familyName>Specia</familyName> <affiliation>Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK & Department of Computing, Imperial College London, London SW7 2AZ, UK</affiliation> </creator> </creators> <titles> <title>Estimating post-editing effort: a study on human judgements, task-based and reference-based metrics of MT quality</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-11-02</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3525003</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3525002</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/iwslt2019</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Devising metrics to assess translation quality has always been at the core of machine translation (MT) research. Traditional automatic reference-based metrics, such as BLEU, have shown correlations with human judgements of adequacy and fluency and have been paramount for the advancement of MT system development. Crowd-sourcing has popularised and enabled the scalability of metrics based on human judgments, such as subjective&nbsp;direct assessments&nbsp;(DA) of adequacy, that are believed to be more reliable than reference-based automatic metrics. Finally, task-based measurements, such as post-editing time, are expected to provide a more de- tailed evaluation of the usefulness of translations for a specific task. Therefore, while DA averages adequacy&nbsp;judgements&nbsp;to obtain an appraisal of (perceived) quality independently of the task, and reference-based automatic metrics try to objectively estimate quality also in a task-independent way, task-based metrics are&nbsp;measurements&nbsp;obtained either during or after performing a specific task. In this paper we argue that, although expensive, task-based measurements are the most reliable when estimating MT quality in a specific task; in our case, this task is post-editing. To that end, we report experiments on a dataset with newly-collected post-editing indicators and show their usefulness when estimating post-editing effort. Our results show that task-based metrics comparing machine-translated and post-edited versions are the best at tracking post-editing effort, as expected. These metrics are followed by DA, and then by metrics comparing the machine-translated version and independent references. We suggest that MT practitioners should be aware of these differences and acknowledge their implications when decid- ing how to evaluate MT for post-editing purposes.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 165 | 165 |
Downloads | 133 | 133 |
Data volume | 57.0 MB | 57.0 MB |
Unique views | 145 | 145 |
Unique downloads | 117 | 117 |