Conference paper Open Access
Di Gangi, Matti; Enyedi, Robert; Brusadin, Alessandra; Federico, Marcello
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <controlfield tag="005">20200120173402.0</controlfield> <controlfield tag="001">3524947</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Amazon AI, East Palo Alto, USA</subfield> <subfield code="a">Enyedi, Robert</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Amazon AI, East Palo Alto, USA</subfield> <subfield code="a">Brusadin, Alessandra</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Amazon AI, East Palo Alto, USA</subfield> <subfield code="a">Federico, Marcello</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">139777</subfield> <subfield code="z">md5:3d5686aed1fb4127847cffda9e8a5f5d</subfield> <subfield code="u">https://zenodo.org/record/3524947/files/IWSLT2019_paper_3.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-11-02</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-iwslt2019</subfield> <subfield code="o">oai:zenodo.org:3524947</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Fondazione Bruno Kessler, Trento, Italy & University of Trento, Italy</subfield> <subfield code="a">Di Gangi, Matti</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Robust Neural Machine Translation for Clean and Noisy Speech Transcripts</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-iwslt2019</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Neural machine translation models have shown to achieve high quality when trained and fed with well structured and punctuated input&nbsp;texts. Unfortunately, the latter condition is not met in spoken language translation, where the input is generated by an automatic speech&nbsp;recognition (ASR) system. In this paper, we study how to adapt a strong NMT system to make it robust to typical ASR errors. As in our application scenarios transcripts might be post-edited by human experts, we propose adaptation strategies to train a single system that can translate either clean or noisy input with no supervision on the input type. Our experimental results on a public speech translation data set show that adapting a model on a significant amount of parallel data including ASR transcripts is beneficial with test data of the same type, but produces a small degradation when translating clean text. Adapting on both clean and noisy variants of the same data leads to the best results on both input types.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3524946</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3524947</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 693 | 693 |
Downloads | 161 | 161 |
Data volume | 22.5 MB | 22.5 MB |
Unique views | 663 | 663 |
Unique downloads | 143 | 143 |