Conference paper Open Access
Di Gangi, Matti; Enyedi, Robert; Brusadin, Alessandra; Federico, Marcello
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3524947</identifier> <creators> <creator> <creatorName>Di Gangi, Matti</creatorName> <givenName>Matti</givenName> <familyName>Di Gangi</familyName> <affiliation>Fondazione Bruno Kessler, Trento, Italy & University of Trento, Italy</affiliation> </creator> <creator> <creatorName>Enyedi, Robert</creatorName> <givenName>Robert</givenName> <familyName>Enyedi</familyName> <affiliation>Amazon AI, East Palo Alto, USA</affiliation> </creator> <creator> <creatorName>Brusadin, Alessandra</creatorName> <givenName>Alessandra</givenName> <familyName>Brusadin</familyName> <affiliation>Amazon AI, East Palo Alto, USA</affiliation> </creator> <creator> <creatorName>Federico, Marcello</creatorName> <givenName>Marcello</givenName> <familyName>Federico</familyName> <affiliation>Amazon AI, East Palo Alto, USA</affiliation> </creator> </creators> <titles> <title>Robust Neural Machine Translation for Clean and Noisy Speech Transcripts</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-11-02</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3524947</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3524946</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/iwslt2019</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Neural machine translation models have shown to achieve high quality when trained and fed with well structured and punctuated input&nbsp;texts. Unfortunately, the latter condition is not met in spoken language translation, where the input is generated by an automatic speech&nbsp;recognition (ASR) system. In this paper, we study how to adapt a strong NMT system to make it robust to typical ASR errors. As in our application scenarios transcripts might be post-edited by human experts, we propose adaptation strategies to train a single system that can translate either clean or noisy input with no supervision on the input type. Our experimental results on a public speech translation data set show that adapting a model on a significant amount of parallel data including ASR transcripts is beneficial with test data of the same type, but produces a small degradation when translating clean text. Adapting on both clean and noisy variants of the same data leads to the best results on both input types.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 689 | 689 |
Downloads | 161 | 161 |
Data volume | 22.5 MB | 22.5 MB |
Unique views | 659 | 659 |
Unique downloads | 143 | 143 |