Conference paper Open Access
Di Gangi, Matti; Enyedi, Robert; Brusadin, Alessandra; Federico, Marcello
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3524947"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3524947</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3524947"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Di Gangi, Matti</foaf:name> <foaf:givenName>Matti</foaf:givenName> <foaf:familyName>Di Gangi</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Fondazione Bruno Kessler, Trento, Italy & University of Trento, Italy</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Enyedi, Robert</foaf:name> <foaf:givenName>Robert</foaf:givenName> <foaf:familyName>Enyedi</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Amazon AI, East Palo Alto, USA</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Brusadin, Alessandra</foaf:name> <foaf:givenName>Alessandra</foaf:givenName> <foaf:familyName>Brusadin</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Amazon AI, East Palo Alto, USA</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Federico, Marcello</foaf:name> <foaf:givenName>Marcello</foaf:givenName> <foaf:familyName>Federico</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Amazon AI, East Palo Alto, USA</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Robust Neural Machine Translation for Clean and Noisy Speech Transcripts</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-11-02</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://zenodo.org/record/3524947"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3524947</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3524946"/> <dct:isPartOf rdf:resource="https://zenodo.org/communities/iwslt2019"/> <dct:description><p>Neural machine translation models have shown to achieve high quality when trained and fed with well structured and punctuated input&nbsp;texts. Unfortunately, the latter condition is not met in spoken language translation, where the input is generated by an automatic speech&nbsp;recognition (ASR) system. In this paper, we study how to adapt a strong NMT system to make it robust to typical ASR errors. As in our application scenarios transcripts might be post-edited by human experts, we propose adaptation strategies to train a single system that can translate either clean or noisy input with no supervision on the input type. Our experimental results on a public speech translation data set show that adapting a model on a significant amount of parallel data including ASR transcripts is beneficial with test data of the same type, but produces a small degradation when translating clean text. Adapting on both clean and noisy variants of the same data leads to the best results on both input types.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3524947"/> <dcat:byteSize>139777</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/3524947/files/IWSLT2019_paper_3.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 693 | 693 |
Downloads | 161 | 161 |
Data volume | 22.5 MB | 22.5 MB |
Unique views | 663 | 663 |
Unique downloads | 143 | 143 |