Conference paper Open Access

Robust Neural Machine Translation for Clean and Noisy Speech Transcripts

Di Gangi, Matti; Enyedi, Robert; Brusadin, Alessandra; Federico, Marcello


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3524947">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3524947</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3524947"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Di Gangi, Matti</foaf:name>
        <foaf:givenName>Matti</foaf:givenName>
        <foaf:familyName>Di Gangi</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Fondazione Bruno Kessler, Trento, Italy &amp; University of Trento, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Enyedi, Robert</foaf:name>
        <foaf:givenName>Robert</foaf:givenName>
        <foaf:familyName>Enyedi</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Amazon AI, East Palo Alto, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Brusadin, Alessandra</foaf:name>
        <foaf:givenName>Alessandra</foaf:givenName>
        <foaf:familyName>Brusadin</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Amazon AI, East Palo Alto, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Federico, Marcello</foaf:name>
        <foaf:givenName>Marcello</foaf:givenName>
        <foaf:familyName>Federico</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Amazon AI, East Palo Alto, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Robust Neural Machine Translation for Clean and Noisy Speech Transcripts</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-11-02</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3524947"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3524947</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3524946"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/iwslt2019"/>
    <dct:description>&lt;p&gt;Neural machine translation models have shown to achieve high quality when trained and fed with well structured and punctuated input&amp;nbsp;texts. Unfortunately, the latter condition is not met in spoken language translation, where the input is generated by an automatic speech&amp;nbsp;recognition (ASR) system. In this paper, we study how to adapt a strong NMT system to make it robust to typical ASR errors. As in our application scenarios transcripts might be post-edited by human experts, we propose adaptation strategies to train a single system that can translate either clean or noisy input with no supervision on the input type. Our experimental results on a public speech translation data set show that adapting a model on a significant amount of parallel data including ASR transcripts is beneficial with test data of the same type, but produces a small degradation when translating clean text. Adapting on both clean and noisy variants of the same data leads to the best results on both input types.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3524947"/>
        <dcat:byteSize>139777</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3524947/files/IWSLT2019_paper_3.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
693
161
views
downloads
All versions This version
Views 693693
Downloads 161161
Data volume 22.5 MB22.5 MB
Unique views 663663
Unique downloads 143143

Share

Cite as