Conference paper Embargoed Access

Mobility Management Solutions in Industrial Wireless Sensor Networks

Zinonos Zinon; Vassiliou Vasos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2021-11-01</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20191122135320.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work has been partly supported by the project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739578 (RISE – Call: H2020-WIDESPREAD-01-2016-2017-TeamingPhase2) and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.</subfield>
  </datafield>
  <controlfield tag="001">3524852</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science University of Cyprus Nicosia, Cyprus and RISE Research Center on Interactive Media, Smart Systems and Emerging Technologies,Nicosia,Cyprus</subfield>
    <subfield code="a">Vassiliou Vasos</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">embargoed</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-11-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-rise-teaming-cyprus</subfield>
    <subfield code="o">oai:zenodo.org:3524852</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Information Sciences Neapolis University Pafos Pafos, Cyprus</subfield>
    <subfield code="a">Zinonos Zinon</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Mobility Management Solutions in Industrial Wireless Sensor Networks</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rise-teaming-cyprus</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A number of sensor network applications are envisioned to be applied to industry settings where the existence of mobile nodes (MN) is required. In critical applications, the realtime monitoring of a MN must always be available, something that requires the existence of a suitable mobility protocol to control the handoff procedure. In this paper, we use an industrial WSN setting to perform a comprehensive performance evaluation of different mobility handling solutions based on single- and multiple-metric options. The results show that Fuzzy Logic-based Mobility Controller (FLMC), the multiple-metric approach we used (based on Fuzzy Logic), performs better compared to any single metric-based approach under a varying set of conditions. More specifically, we demonstrate that the Fuzzy Logic -based approach can efficiently control the handoff triggering procedure and provide high reliability (low packet loss) under different mobility models, different radio propagation models, and different topologies.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/DCOSS.2019.00121</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
19
8
views
downloads
Views 19
Downloads 8
Data volume 3.7 MB
Unique views 17
Unique downloads 8

Share

Cite as