Journal article Open Access

Real-time 3D Human Pose and Motion Reconstruction from Monocular RGB Videos

Anastasion Yiannakides; Andreas Aristidou; Yiorgos Chrysanthou


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2020-04-29</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20200429082019.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work has been partly supported by the project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739578 (RISE – Call: H2020-WIDESPREAD-01-2016-2017-TeamingPhase2) and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.</subfield>
  </datafield>
  <controlfield tag="001">3524137</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, University of Cyprus AND RISE Research Center, Nicosia, Cyprus</subfield>
    <subfield code="a">Andreas Aristidou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, University of Cyprus AND RISE Research Center, Nicosia, Cyprus</subfield>
    <subfield code="a">Yiorgos Chrysanthou</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4195768</subfield>
    <subfield code="z">md5:63618dd7c0e91c74d312a967b3e6b074</subfield>
    <subfield code="u">https://zenodo.org/record/3524137/files/RealTime_3D_Human_Motion_Reconstruction.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-04-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-rise-teaming-cyprus</subfield>
    <subfield code="o">oai:zenodo.org:3524137</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, University of Cyprus AND RISE Research Center, Nicosia, Cyprus</subfield>
    <subfield code="a">Anastasion Yiannakides</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Real-time 3D Human Pose and Motion Reconstruction from Monocular RGB Videos</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rise-teaming-cyprus</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739578</subfield>
    <subfield code="a">Research Center on Interactive Media, Smart System and Emerging Technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Real-time 3D pose estimation is of high interest in interactive applications, virtual reality, activity recognition, but most importantly, in the growing gaming industry. In this work, we present a method that captures and reconstructs the 3D skeletal pose and motion articulation of multiple characters using a monocular RGB camera. Our method deals with this challenging, but useful, task by taking advantage of the recent development in deep learning that allows 2D pose estimation of multiple characters, and the&amp;nbsp;increasing availability of motion capture data. We fit 2D estimated poses, extracted from a single camera via OpenPose, with a 2D multi-view joint projections database that is associated with their 3D motion representations. We then retrieve the 3D body pose of the tracked character, ensuring throughout that the reconstructed movements are natural, satisfy the model constraints, are within a feasible set, and are temporally smooth without jitters. We demonstrate the performance of our method in several examples, including human locomotion, simultaneously capturing of multiple characters, and motion reconstruction from different camera views.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1002/cav.1887</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
41
12
views
downloads
Views 41
Downloads 12
Data volume 50.3 MB
Unique views 39
Unique downloads 12

Share

Cite as