Conference paper Open Access
Ioannou Christiana; Vasos Vasiliou
{ "DOI": "10.1109/DCOSS.2019.00118", "language": "eng", "title": "Classifying Security Attacks in IoT Networks Using Supervised Learning", "issued": { "date-parts": [ [ 2019, 10, 31 ] ] }, "abstract": "<p>Machine learning models have long be proposed to detect the presence of unauthorized activity within computer networks. They are used as anomaly detection techniques to detect abnormal behaviors within the network. We propose to use Support Vector Machine (SVM) learning anomaly detection model to detect abnormalities within the Internet of Things. SVM creates its normal profile hyperplane based on both benign and malicious local sensor activity. An important aspect of our work is the use of actual IoT network traffic with specific network layer attacks implemented by us. This is in contrast to other works creating supervised learning models, with generic datasets. The proposed detection model achieves up to 100% accuracy when evaluated with unknown data taken from the same network topology as it was trained and 81% accuracy when operating in an unknown topology.</p>", "author": [ { "family": "Ioannou Christiana" }, { "family": "Vasos Vasiliou" } ], "note": "This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.", "version": "Accepted pre-print", "type": "paper-conference", "id": "3523972" }
Views | 47 |
Downloads | 19 |
Data volume | 6.7 MB |
Unique views | 43 |
Unique downloads | 18 |