
Learning Via-Point Movement Primitives
with Inter- and Extrapolation Capabilities

You Zhou, Jianfeng Gao and Tamim Asfour

Abstract— Movement Primitives (MPs) are a promising way
for representing robot motions in a flexible and adaptable
manner. Due to the simple and compact form, they have been
widely used in robotics. A major goal of the research activities
on MPs is to learn models, which can adapt to changing task
constraints, e. g. new motion targets. However, the adaptability
of current MPs is limited to a small set of constraints due
to their simple structures. It is indeed not a trivial task to
maintain the simplicity of MPs representation and, at the same
time, enhance their adaptability. In this paper, we discuss the
adaptability of popular MPs such as Dynamic Movement Prim-
itives (DMP) and Probabilistic Movement Primitives (ProMP)
and propose a new simple but efficient formulation of MPs,
the Via-points Movement Primitive (VMP), that can adapt to
arbitrary via-points using a simple structured model that is
based on the previous approaches but outperforms those in
terms of extrapolation abilities.

I. INTRODUCTION

Learning from human demonstrations (LfD) is a promising
approach for intuitive robot programming [1]. In order to
avoid repeated human demonstrations for specific tasks with
variable task constraints, different approaches have been pro-
posed to learn generalized representations of actions which
allow adaptation to new situations. Due to their simplicity
and compact representations, Movement Primitives (MPs)
are one of the most used approaches for LfD. The adapt-
ability of MPs is mainly dependent on their structure and
basic assumptions. Hence, different types of MPs have been
developed to enhance the adaptability and realize intuitive
robot behaviors to new task constraints ([2], [3], [4], [5]).
Except for the temporal adaptation, the adaptability of MPs
can be reflected by their capability of via-points modulation.
Via-points represent additional points through which e.g. the
robot end-effector has to pass in order to fulfill certain task
requirements, which may change also during the execution
(see Fig.1). In this work, we will refer to any newly required
intermediate point as well as to new start and goal of the
trajectories as via-points.

Regarding the via-points modulation, previous MPs have
different limitations because of the assumptions based on
which they are developed. For example, Dynamic Movement
Primitives (DMP) (proposed and refined in [2], [6], [7])
can only adapt to new starts and goals, but cannot di-
rectly handle intermediate via-points. Although Probabilistic
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Fig. 1: An orientation via-point is specified to pass a ruler with
different length through a narrow area.

Movement Primitives (ProMP) that were introduced in [5]
can adapt to via-points within the statistical distribution
of the demonstrated trajectories, they generate infeasible
motions for via-points beyond the original observation range
(see Fig. 5). In many robotic applications, however, the
robot is expected to apply the learned MPs for via-points
outside the area of demonstrated trajectories. We refer to this
as via-points extrapolation, which goes beyond via-points
interpolation where the required via-points are in the area of
the demonstrated trajectories. The lack of arbitrary via-points
modulation limits the usability and adaptability of current
MPs.

In this work, we introduce a new formulation for MPs, the
Via-points Movement Primitives (VMP), that can adapt to
any via-points and resolve the limitations of previous meth-
ods. Based on VMP, we also propose a new learning frame-
work, where the robot memorizes few via-points instead of
observing repeated human demonstrations to accommodate
new task constraints.

In section II, we compare the adaptability among previous
MPs and clarify the reasons of their limitations regarding via-
points modulation. In section III we introduce the basic VMP
formulation and compare the via-point modulation among
DMP, ProMP and VMP. In addition, we provide a task
space VMP to allow the integration of via-points defined
by both positions and orientations. In section IV, a learning
framework based on VMP is presented allowing a robot to
efficiently learn motion adaptations from a human teacher
when encountering failures. Several robot experiments are
conducted to prove the usability of VMP and the importance
of via-points modulation in various robotic applications.

II. REPRESENTATIONS OF MOVEMENT PRIMITIVES

The work we describe in this paper is concerned with
the representation of movement primitives. To clarify the



contribution of our work in terms of via-points adaptabil-
ity, we provide here an overview on three closely related
approaches in the literature: Autonomous Dynamical System
(DS), Dynamic Movement Primitive (DMP) and Probabilistic
Movement Primitive (ProMP).

a) Autonomous Dynamical System: For the sake of
completeness, we introduce DS here, because it is a popular
approach for the robot motion generation. As described in [4]
and [8], DS assumes that a robot motion is governed by
an autonomous dynamical system defined over the robot
state space. For trajectories defined in the Cartesian space,
DS outputs the translational and rotational velocity for any
specific input pose. In the pick place experiment in [9],
authors moved the attractor of a DS to let the motion
go through the via-points. In fact, this approach can be
considered as running a sequence of dynamical systems one
after an another. The via-points are indeed the goals of the
motions. As shown in [9], DS can adapt to the new goal
by changing its attractor, but it cannot directly adapt to the
intermediate via-points.

We describe DMP and ProMP in more detail for a better
understanding of our approach, which combines their advan-
tages and resolves their limitations.

b) Dynamic Movement Primitive: DMP was originally
developed as a deterministic motion representation for con-
venient speed and goal adaptation in [2]. In [10], it was
extended to have probabilistic representations. In this paper,
we consider a variant DMP formulation mentioned in [6]
and [7] that outperforms the original one for goal adaptations.
By reformulating the formulation in the paper, we obtain

τ v̇ = K((y0 − g)x+ g + xf(x)− y)−Dv;
τ ẏ = v,

(1)

where y and v are the position and velocity, g and y0 are
the goal and start position of the motion. x is the canonical
variable that serves as a virtual timer and controlled by a
canonical system, which is a linear decay system going from
1 to 0 in this paper. This DMP can be considered as a PD
controller with parameters K and D tracking a nonlinear
attractor trajectory consisting of a linear trajectory with a
constant velocity profile in the canonical space, namely (y0−
g)x + g, and a non-linear force term f(x). The force term
f(x) is usually represented by a linear model consisting of
a parameter vector w and N radial basis functions (RBF)
ψ(.) namely

f(x) =

∑N
i=1ψi(x)wi∑N
i=1ψi(x)

. (2)

If and only if K is big enough for perfect tracking, the at-
tractor trajectory coincides with the real trajectory executed.
In this case, the non-linear force term f(x) can be regarded
as the difference between the demonstrated motion and the
linear trajectory. By changing the hyper-parameter g, a single
DMP can generate motions which adapt to the new goal.
Because DMP is trained on a single demonstration, any new
goal refers to a via-point extrapolation. According to [11],
it generates a topologically similar trajectory to the original

demonstration for the unseen new goals. In [12], the authors
proved that DMP minimizes a distance measure between the
original trajectory and the adapted one.

As DS, DMP cannot directly adapt to intermediate via-
points without extra learning methods. In [13], the authors
used reinforcement learning to adjust the goal g and the pa-
rameter w of DMP for via-points adaptation. Reinforcement
learning for via-points modulation requires a cost function
and the process takes usually several iterations. The adapted
motions are also difficult to predict. This is inefficient and
not practical for many robotic applications. The reason why
DMP does not support intermediate via-points is that it learns
the attractor trajectory instead of the real trajectory for a
PD tracking controller. It is not easy to adjust the motion
by manipulating the attractor trajectory. According to [11],
DMP usually serves as a kinematic planner that outputs a
sequence of desired trajectory points in the Cartesian space,
or in the joint configuration space. The robot needs to be
equipped with a tracking controller that can accurately track
the kinematic plan. For this reason, it is not necessary to
learn the attractor trajectory.

c) Probabilistic Movement Primitives: ProMP [5] di-
rectly learns the position and velocity profiles of a real
trajectory with a linear model and a noise term ε

y(x) = ψ(x)Tw + εy εy ∼ N (0,Σy), (3)

where ψ(.) is the radial basis function (RBF) of the canonical
variable x. Learning a ProMP means learning the prior
probability of w which is assumed to be a Gaussian distri-
bution N (µw,Σw). The likelihood function when observing
multiple demonstrations with respect to the parameters w is
given by:

p(D|w) =
∏
ξ∈D

p(ξ|w), p(ξ|w) =
∏
x

N (yx|ψ(x)Tw,Σy),

(4)
where ξ ∈ D is a trajectory in the set of demonstrations D.
The maximum likelihood estimator (MLE) of the parameters
is that

µw =
1

M

M∑
i=1

wi, Σw =
1

M

M∑
i=1

(wi − µw)(wi − µw)T ,

(5)
where wi is the parameter vector of the linear model
learned to represent the i-th trajectory. This probabilistic
representation enables the via-point modulation with the
conditional probability of w conditioning on the desired via-
point (x∗, y∗) with an uncertainty Σ∗y . The parameters of this
conditional Gaussian distribution are calculated as follows:

µ∗w = µw + L(y∗ −ψ(x∗)Tµw),

Σ∗w = Σw − Lψ(x∗)TΣw,

L = Σwψ(x∗)(Σ∗y +ψ(x∗)TΣwψ(x∗))−1.

(6)

And the resulting mean trajectory has the form y(x) =
ψ(x)Tµ∗w. ProMP makes a strong assumption that the human
demonstrations cover the whole possible workspace for a



Fig. 2: Via-point modulation by changing the elementary trajectory
h. The motion for drawing ”α” in a 2D plane is divided into two
parts: elementary trajectory h and shape modulation f . Left: The
VMP is learned by only one demonstration. Middle: The via-points
modulation is realized by manipulating the elementary trajectory h.
Right: In this process, the learned force modulation is not changed.

specific task, which is hardly always the case. With a
limited number of demonstrations, ProMP often learns an
erroneous prior probability of w that works only in a narrow
area surrounded by or near to demonstrations. Hence, it
might generate infeasible motions when adapting to via-
points outside the observation range. In the extreme case that
there is only one demonstration, ProMP learns a Gaussian
distribution with zero variance Σw = 0. If the goal is
changed or any via-points are required to be exactly gone
through, which means Σ∗y = 0, we encounter a numerical
problem when calculating L in the above formulation. Thus
ProMP performs even worse than DMP for goal adaptation
if only one demonstration is available.

Before introducing VMP, we will clarify the limitation of
MP adaptability. In fact, the adaptation of any MP cannot
be correct in all cases imaginable. The generated trajecto-
ries may not be suitable to accomplish some tasks. DMP
assumes that the goal adaptation is changing the attractor of
the damped spring system, while ProMP assumes that the
adapted trajectory is a sample from a conditional Gaussian
distribution. These assumptions may be wrong for specific
tasks. We are not attempting to solve this fundamental
problem by VMP. But VMP enhances the adaptability of
MPs by enabling intermediate via-point modulation and
extrapolating to generate feasible trajectories for via-points
outside the observation range. Furthermore, we develop a
learning framework based on VMP (see section IV) that
allows us to teach a robot how to efficiently adapt when
encountering failure, which can be a practical solution to the
correctness problem.

III. VIA-POINT MOVEMENT PRIMITIVE

A. Basic Formulation

Inspired by both DMP and ProMP, VMP consists of two
parts, an elementary trajectory h and shape modulation f :

y(x) = h(x) + f(x). (7)

The shape modulation f(x) is represented by a linear model
with RBF ψ(.) and parameters w, and a noise term εf such
that

f(x) = ψ(x)Tw + εf .

And we assume that the weights vector of the shape modu-
lation follows a Gaussian distribution as ProMP does. If the
variance is zero, the shape modulation is deterministic. The
elementary trajectory h(x) directly connects the start and the
goal of the demonstrated motion. As an example depicted
in Fig. 2, the motion that draws the letter ”α” is separated
into the linear trajectory h and the shape modulation f .
We assume that the elementary trajectory h forms the basic
structure for VMP, equivalent to the goal-directed damped
spring system of DMP. Similar to the goal adaptation of
DMP, manipulating the basic structure h provides a way for
via-points modulation (see Fig.2). Learning VMP is to learn
the shape modulation f , or precisely the prior probability
distribution of parameters vectors w. The mean µw is the
representation of the empirical averaged shape modulation.
Once the prior probability of w is learned, the probabilistic
form of VMP becomes as follows:

y(x) ∼ N
(
h(x) +ψ(x)Tµw,ψ(x)TΣwψ(x) + Σf

)
, (8)

which provides an another way for the via-point modulation.
We calculate the conditional probability of w given an arbi-
trary via-point (see Eq. 17). In this case, VMP manipulates
the shape f of the trajectory to let it go through some
given via-points. VMP realizes the via-points modulation by
either manipulating the elementary trajectory h or the shape
modulation f . Before we discuss the via-points modulation
in more detail, it is necessary to know what the elementary
trajectory looks like and how to realize intermediate via-point
modulation by manipulating h(x).

We represent a via-point with a pair (xvia, yvia) where
xvia denotes the canonical value when going through the
via-point yvia.

B. Elementary Trajectory

Without loss of generality, in this section, we assume that
MPs are trained on only one demonstration. As mentioned
before, in this case, ProMP cannot adapt to any via point at
all. Even though VMP has also zero variance of its shape
modulation, it can avoid the numerical problem of ProMP
mentioned before by changing only the elementary trajectory
for via-points adaptation.

If no intermediate via-points are required, a linear el-
ementary trajectory h(x) directly connects the start and
the goal in the spatial domain. Once an intermediate via-
point (xvia, yvia) is required, h(x) will be divided into two
segments. One segment guarantees the connection between
the previous via-point, which may be the start and the new
via-point. And the other one ensures the connection of the
new via-point with the next via-point, which may be the
goal.

In this paper, we will present two types of trajectory
segments. One of them is the linear trajectory with a constant



Fig. 3: The black dotted line is the original trajectory and the red
line is the trajectory which adapts to the via-points (red circles) that
have the same canonical values as the original points (black circles).
The linear trajectory segments with a constant velocity generate a
sudden acceleration at the via-point. This problem can be solved
by an optimization problem defined in Eq.13 or the minimum-jerk
trajectory segments defined in Eq.14. The minimum-jerk trajectories
generate more topologically similar trajectory because the velocities
and accelerations can also be specified.

velocity profile that has a close relationship with DMP. The
other one is the minimum-jerk trajectory that leads to a more
flexible way of via-points modulations.

a) Linear trajectory with a constant velocity: A linear
trajectory with a constant speed that goes through start (1, y0)
and goal (0, g) has the formula h(x) = (y0−g)x+g. Hence,
the trajectory is represented as follows:

y(x) = (y0 − g)x+ g + f(x), (9)

which is the same as the attractor trajectory described in the
DMP formulation Eq. 1. As mentioned before, the attractor
trajectory is similar to the real one if the PD tracking
controller formed by DMP has a very high gain K. In
this case, DMP is not different from VMP. In addition,
the adaptability of DMP to new goals is also realized by
changing g in h(x). Hence, there is no difference between
DMP and VMP when extrapolating trajectories for new
goals.

In order to handle intermediate via-points, we divide the
trajectory h(x) into segments to form a piece-wise linear
function. For only one via-point, we can have the elementary
trajectory as follows:

h(x) =


− (hvia−y0)x

1−xvia
+ y0 + (hvia−y0)

1−xvia
x ≤ xvia

− (g−hvia)x
xvia

+ g x > xvia,

(10)

where hvia = yvia − f(xvia). This formulation results from
the three constraints

h(0) = g, h(1) = y0, h(xvia) = yvia − f(xvia). (11)

Theoretically, it can adapt to as many via-points as required
by introducing appropriate number of linear segments. How-
ever, the connection (turning point) of the piece-wise linear
functions introduces potentially high accelerations, which is
undesirable when controlling a real robot.

As mentioned before, in [12], the authors proved that DMP
described in [6] and [7] gives the same trajectory as the
solution of an optimization problem of the form

ξ̂ = arg minξ∈Ξ||ξD − ξ||M
s.t. y(1) = y0, y(0) = g,

(12)

where ξD is the demonstrated trajectory and ||ξ||M= ξTMξ.
M is a semi-norm such that M = ATA with A being the
finite differencing matrix. We can extend this problem by in-
troducing the intermediate via-point and obtain the following
optimization problem by canceling the shape modulation:

ĥ = arg minh∈H
1
2 (hD − h)TM(hD − h)

s.t. h(1) = y0, h(0) = g,
h(xvia) = yvia − f(xvia)

(13)

The solution to this optimization problem is very similar to
the case, where the elementary trajectory is piece-wise linear,
but with a smoother turning point. The left and middle figures
in Fig. 3 show the difference of their generated trajectories.

b) Minimum-Jerk Trajectory: A minimum-jerk trajec-
tory is the trajectory of the movement that minimizes the
third time derivative of the displacement. This trajectory
is used extensively to model human reaching movement,
largely motivated by [14]. We use a fifth order polynomial
to model the minimum-jerk trajectory:

y(x) =

5∑
k=0

akx
k + f(x) (14)

The parameters aks are obtained by the position, velocity
and acceleration of the two adjacent via-points such that

h(x0) = y0 − f0 ḣ(x0) = ẏ0 − ḟ0 ḧ(x0) = ÿ0 − f̈0

h(x1) = y1 − f1 ḣ(x1) = ẏ1 − ḟ1 ḧ(x1) = ÿ1 − f̈1.
(15)

(x0, y0) and (x1, y1) are two adjacent via-points. f0 =
f(x0) and f1 = f(x1) represent the shape modulation.
The minimum-jerk trajectory segment is more powerful than
the previous one because the velocities and accelerations at
via-points can also be specified. For via-point modulation,
thus, we can obtain a more similar trajectory when matching
the velocity at the via-point with the corresponding one
in the demonstrated trajectory. Moreover, the smoothness
around the via-points can also be guaranteed by equating
the velocities at the via-point of two connected trajectory
segments(see Fig. 3).

Manipulating the elementary trajectory h(x) enables the
via-point modulation in areas outside the demonstrated tra-
jectories. Note again that ProMP is not able to adapt to
anything in the case of single demonstration. Hence, it is
not necessary to compare ProMP with VMP in this section.
In the next section, we will introduce the via-points modu-
lation strategy of VMP by also considering its probabilistic
representation, and compare VMP with ProMP in detail.

C. Via-Points Modulation

As DMP, VMP assumes that a goal-oriented basic struc-
ture always exists. As ProMP, VMP also supposes that



the task-specific trajectories follow a Gaussian distribution
that is, however, only valid near the demonstrations. VMP
combines strategies from both DMP and ProMP for via-point
modulation and determines when to manipulate h(x) or f(x)
by calculating the probability density of the desired via-point
given the current learned prior probability of w:

p(yvia|µw,Σw) = N (yvia;h(xvia) +ψ(xvia)Tµw,

ψ(xvia)TΣwψ(xvia) + Σvia) (16)

Here, (xvia, yvia) is the required via-point with the uncer-
tainty Σvia. If this conditional probability is more than a
specific threshold η, VMP will manipulate the shape modu-
lation f(x) with the conditional distribution parameters:

µ∗w = µw + L(yvia − h(xvia)−ψ(xvia)Tµw),

Σ∗w = Σw − Lψ(xvia)TΣw,

L = Σwψ(x)(Σvia +ψ(x)TΣwψ(x))−1.
(17)

If the conditional probability is less than η, which means
that the desired via-point is unlikely based on the learned
prior probability of w, VMP will manipulate the elementary
trajectory h(x) as discussed in the subsection III-B.

To compare VMP with ProMP, we first consider a simple
case where a new goal out of range of observations is re-
quired. ProMP sticks to the low variance region, while VMP
manipulates the elementary trajectory h(x) to translate the
whole trajectory distribution because p(gnew|µw,Σw) < η
(see Fig.4). In order to guarantee that the sampled trajectory
goes through the new goal, VMP further manipulates the
shape modulation f(x) only to reduce the variance of the
trajectories. VMP results in a trajectory with a similar shape
to the original one. In contrast, ProMP generates infeasible
motions because the learned prior probability is not suitable
for required via-points any more.

In Fig. 5, we compare further the behavior of VMP with
ProMP. In this case, both are trained on drawing eight
figures. Two different intermediate via-points are required
separately during two motion executions. For the via-point
that is surrounded by the learned trajectory distribution where
p(yvia|µw,Σw) > η, VMP behaves the same as ProMP (blue
curves). For the via-point that p(yvia|µw,Σw) < η, VMP
manipulates the elementary trajectory h(x) and generates
a scaled figure eight that goes through the via-point (see
the green curves). In contrast, ProMP fails to generate any
reasonable motions (see the most left-bottom figure). The
parameter η is manually designed here. It is task specific to
determine whether a motion generated by ProMP for via-
points adaptation is good or not. Hence, it is not trivial
to automatically decide η in a general way. In the extreme
case, if it is very small, the behaviour of VMP has no big
difference from ProMP. If it is very big, all via-points are
adapted by adjusting the elementary trajectory, which can
still meet requirements in many applications. With an η in the
middle, we show that VMP is indeed a strategy combining
ways of both ProMP and DMP for via-points adaptation.

Fig. 4: Left: ProMP generates trajectories going through low
variance region (red circle). Right: VMP adapts to the goal with
two steps. Firstly it changes elementary trajectories (see the middle
plot) and then reduces the variance (see the most right plot).

Fig. 5: Comparison between VMP (with η = 0.8) and ProMP for
drawing a figure eight. We consider three cases: without via-points
(red curves), with a via-point within the observation range (blue
curves) and with a via-point outside the range (green curves). The
top-right plots show the vertical axis values along the time line. The
bottom-right plots show the result motions. Different elementary
trajectory segments generate slightly different trajectories.

In the top row of the Fig. 5, we depict the trajectories
for the vertical dimension in the time domain. It is clear
to see that ProMP sticks to the region with a low variance.
If carefully inspecting the training data, it is easy to find
that the region of the low variance does not have any
special meaning. It corresponds to a point at the bottom
of figure eights which is coincidentally gone through by all
demonstrations. This causes the erroneous prior probability
learned in ProMP. In fact, it is to be expected to have
an erroneous prior probability if we assume that all task-
specific trajectories follow a Gaussian distribution because
the number of demonstrations for a real robot application is
always very limited and human demonstrations usually can-
not cover all possible situations. In this case, VMP assumes
that there is a goal-directed trajectory that stabilizes the
generated motion as DMP does. Although it is still difficult
to guarantee the correctness, VMP generates trajectories with
more similar shapes to the original ones than ProMP does.

It is possible that the low variance region learned from
human demonstrations is essential to accomplish the task,
such as for avoiding some fixed obstacles. In this case, the
way to generate motions with VMP for a far away via-point
might be erroneous, while ProMP can still meet some hard
constraints, even though it provides motions with unnatural
shapes. In practice, this essential region is better guaranteed
by a via-point instead of a low variance region which can
still be violated if the variance is not exactly zero and some
other hard task constraints are required.



In order to use VMP for robotic applications, encoding
the position trajectories is not enough. In the next section,
we propose a way to handle orientation and realize the task
space VMP considering the via-point with both position and
orientation.

D. Task Space VMP

In the task space MP, 3D position trajectories can be
separately encoded and coupled by a canonical system.
However, it is not good to split the orientation into separate
dimensions due to the fact that these dimensions are affected
by each other and can only be controlled in a coherent way.
First, we consider the case of the deterministic VMP and use
the same symbols h and f to denote orientation trajectories.
Compared to Eq.7 for the position trajectory, the orientation
trajectory of VMP is defined by

y(x) = h(x) ∗ f(x) (18)

where ∗ is the quaternion multiplication. In order to encode
the orientation trajectory, we need to first define the elemen-
tary trajectory h(x). For the position, we showed that the
elementary trajectory consisting of segments that directly
connect two adjacent via-points is an intuitive choice. For
orientation, we also need to have an intuitive trajectory
segments that connect two adjacent via-point orientations.
This trajectory can be obtained by the spherical linear
interpolation (SLERP):

h(x) =
sin((1− α(x))β)

sin(β)
q0 +

sin(α(x)β)

sin(β)
q1, (19)

where cos(β) = q0 · q1 (here, · is the dot product of
quaternion elements). q0 and q1 are calculated by

q0 = y0 ∗ f(x0)−1, q1 = y1 ∗ f(x1)−1, (20)

where (x0, y0) and (x1, y1) are two adjacent orientation
via-points. α(x) is the ratio of SLERP ranging from 0
to 1. By controlling the ratio α, we can have different
velocity profiles. For example, the constant velocity profile
of rotation is realized by α(x) = 1

x1−x0
(x − x0). And a

bell-shaped velocity profile corresponding to the minimum-
jerk trajectory for position can be implemented by α(x) =∑5
k=1 ak( x−x0

x1−x0
)k. All results obtained from the discussion

of elementary trajectories in the subsection III-A can be ap-
plied here. It is trivial to manipulate the elementary trajectory
h(x) for via-point modulation.

For the shape modulation, we use three linear model to
represent the trajectories for qx, qy and qz separately. The
first component qw is calculated by the fact that a unit
quaternion is required. The initial value of qw is determined
by the start quaternion, and we track its value continuously
to guarantee that there is no jump caused by the antipodally
symmetric property. For the probabilistic formulation of the
weights, one simple way is to assume that the components
are independent and identically distributed, then we have a
three dimensional gaussian distribution to represent the shape
modulation. We can use the same strategy to calculate the
conditional probability for orientation via-points(see Eq.16).

Fig. 6: The VMP control framework is shown here.

In reality, it is less accurate and more complicated to
calculate the conditional probability for quaternion shape
modulation parts than directly integrating via-points into the
elementary trajectories.

IV. VMP FOR ROBOT APPLICATIONS

In this section, we present different robot applications
with VMP and show the necessity of via-points modulation.
First, a learning framework based on VMP is introduced.
Compared to DMP and ProMP, VMP provides an efficient
way to learn from human when encountering the failure.
Then, we describe the return property of VMP, which is
very practical and useful in the robot application. Finally,
we show how to use VMP for obstacle avoidance.

We trained the robots (such as ARMAR-6 [15]) with
multiple demonstrations, many times with only one single
demonstration in the kinesthetic manner. In all the following
experiments, we integrated via-points into the elementary
trajectory, because it is the main advantage of VMP over
others.

The robot learned both task space and joint space VMP.
The task space VMP provides a sequence of desired positions
and velocities (yd, ẏd), while the joint space VMP outputs
desired joint values (qd, q̇d), that are used for the nullspace
control. The generalized force Fm given by the impedance
control based on the desired task space positions is finally
transferred to the torque command τ with inverse dynamics
(see Fig. 6).

A. VMP based Learning by Demonstrations

As mentioned before, it is hard to always generate cor-
rect motions for via-points modulation. Hence, we need a
robotic learning framework which can not only generalize
its learned motions, but can also learn from human when
encountering the failure. The traditional way to accommodate
new task constraints that cannot be handled by the current
learned DMP/ProMP is to ask human to demonstrate a new
movement which the robot can follow to fulfill the task.
However, this process results in multiple tedious and repeated
demonstrations for even a simple task and a large number of
MPs stored for a specific skill. Instead of a new trajectory
and multiple MPs, VMP requires only one MP with a few
via-points to solve the new task constraints.

In reality, we have experience when learning a skill
from experts, who sometimes prefer adjusting our pose
(via-points) instead of showing us the whole motion again
and again. During the pose adjustment, the experts can
also take individual difference into the consideration. Thus,



Fig. 7: The robot 1) learns a motion by kinesthetic teaching, and reproduces the motion. The robot 2) encounters a failure. 3) A via-point
is memorized. Finally, the robot 4) succeeds with a new trajectory generated by VMP with a via-point. The first row shows the experiment
with ARMAR-6 and the second row is for the sucker gripper.

remembering some important via-points is much simpler and
sometimes essential for learning a skill. Based on VMP, we
present a concrete learning framework shown in Fig.7, which
enables the robot learning from the expert when encountering
the failure.

The top row of the Fig. 7 shows that the learning frame-
work is used for obstacle avoidance with different task
constraints. The learned motion for passing a shorter ruler
does not succeed for a longer one. After the failure is
detected based on the force sensor, the human shows the
robot a via-point with both position and orientation, which
leads to the success. With DMP or ProMP, however, new
MPs are required, which is less efficient than memorizing a
via-point.

One more example is shown in the bottom row of the Fig.7
where a suck gripper learns how to move an object from one
position to the other. The whole motion that is encoded by
only one VMP includes both reaching and transporting the
object. After demonstrating how to move the first object, the
gripper tries to move the second one that is located at a
different position and fails. The human shows the correct
via-point that the gripper should go through. With VMP,
the problem is solved by only one via-point. With DMP,
however, we need to either encode the motion with two
separate parts (one goes to the location of the object, the
other goes to the position to release the object) or train a
new DMP for the second object that is located at a different
place. With ProMP, we need multiple demonstrations which
should cover the whole workspace surrounding the possible
locations of the target object.

B. Return Property of VMP

VMP has one more important benefit, namely return
property, that fully utilizes the knowledge learned from the
demonstrations and releases the burden of a local motion
planner that designs the via-points or an expert who demon-
strates the via-points. If we set a via-point on the original
demonstrated mean trajectory, the rest of the trajectory will

Fig. 8: Top: a via-point on the demonstrated trajectory (red arrows)
guides the generated trajectory back to the original motion. Bottom:
example with the humanoid ARMAR-IIIb [16]. Three via-points are
used to avoid the black tape. Two of them are on the demonstrated
trajectory (the black dotted line). The last one ensures that the
movement after obstacle avoidance is the same as the original
motion.

coincide with the demonstrated one. In Fig. 8, we illustrate
the return property. Fig.9 shows an another example of how
to use this property to guarantee the safety of the motion.
For robot learning by demonstration, no cost function exists
to keep the robot away from failures like in reinforcement
learning. Hence, if no special requirements such as new via-
points exist in the rest of the trajectory, it is beneficial to
keep the generated trajectory near to the demonstrated one
in order to reduce the risk of failure. More failures require a
better motion planner or more human demonstrations for via-
points. Therefore, one extra via-point on the demonstrated
trajectory for the return property of VMP is sometimes very
useful, especially for obstacle avoidance. This return property
only works when the elementary trajectory is adapted for new
via-points.

C. Obstacle Avoidance

In order to be able to use VMP to avoid obstacles, a
learning framework mentioned before or a local motion
planner can be used. Flexibly integrating via-points connects
MP with the task space motion planning.



Fig. 9: Four via-points are integrated to a learned VMP to avoid
an obstacle during grasping. The top-left plot shows the tracking
accuracy. The bottom-left plot shows the difference between VMP
with (colored) and without (dotted) via-points. Four via-points are
corresponding to the black crosses in the top-right diagram. One of
the via-point specifies the grasping pose shown in the bottom-right
image.

Fig. 1 shows that an orientation via-point is integrated
to avoid collision. This valid orientation via-point is easily
found when the robot can observe the boundary of the ladder
as the narrow area. Fig. 9 shows that four via-points are
used to generate a collision-free trajectory. One via-point
is integrated twice before and after grasping to avoid the
obstacle. The location of this via-point is simply calculated
by adding a certain offset from the obstacle. Grasping point
is an another via-point chosen based on the robot manip-
ulability when approaching the target object. The last via-
point pulls the robot end-effector back to the original learned
trajectory to ensure the safety when retracting the hand back
from above the table. This benefits from the return property
mentioned in the last section. VMP can be combined with
some task space motion planner and provides an another
way to avoid collisions. Note that the capability of via-points
modulation is not restricted to obstacle avoidance as shown
in Fig. 7, but provides a more compact representation of a
specific skill.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new formulation for move-
ment primitive, the Via-points Movement Primitive (VMP),
which inherits the advantages from both DMP and ProMP,
and relax their limitations, and a VMP based learning
framework that allows efficient teaching the robot how to
accommodate new task constraints when encountering failure
with generalized motions. While DMPs cannot directly adapt
to intermediate via-points due to the underlying dynamical
system, ProMPs sometimes generate motions that are less
similar to the demonstrated ones. The main advantage of our
VMP representation is the adaptation to arbitrary via-points
by changing the elementary trajectory. Note that VMP is
different from some geometry and optimization based meth-
ods that generate trajectories going through pre-defined via-
points as e. g. described in [17]. The latter one focuses more

on accurate human motion modeling, while the via-points
for VMP are usually task specified. Further, VMPs, similar
to DMPs, can be combined with extra learning algorithms
such as supervised learning for motion generalization and
reinforcement learning for motion refinement. In the future
works, we consider also learning how to automatically set
via-points and the threshold η for specific tasks.
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“ARMAR-III: A Humanoid Platform for Perception-Action Integra-
tion,” in 2nd International Workshop on Human-Centered Robotic
Systems (HCRS), Munich, Germany, 2006.

[17] Y. Meirovitch, D. Bennequin, and T. Flash, “Geometrical invariance
and smoothness maximization for task-space movement generation,”
IEEE Transactions on Robotics, vol. 32, no. 4, pp. 837–853, Aug
2016.


	Introduction
	Representations of Movement Primitives
	Via-Point Movement Primitive
	Basic Formulation
	Elementary Trajectory
	Via-Points Modulation
	Task Space VMP

	VMP for Robot Applications
	VMP based Learning by Demonstrations
	Return Property of VMP
	Obstacle Avoidance

	Conclusion and future works
	References

