Conference paper Open Access

What is Beautiful Continues to be Good: People Images and Algorithmic Inferences on Physical Attractiveness

Matsangidou Maria; Otterbacher Jahna


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/159cde56-9457-4ba1-8104-88cb5c5fa324/Interact_Full%20Paper_1082.pdf"
      }, 
      "checksum": "md5:885b5c0d8ec51f7c5d323a31a69ccc13", 
      "bucket": "159cde56-9457-4ba1-8104-88cb5c5fa324", 
      "key": "Interact_Full Paper_1082.pdf", 
      "type": "pdf", 
      "size": 1816398
    }
  ], 
  "owners": [
    66286
  ], 
  "doi": "10.1007/978-3-030-29390-1_14", 
  "stats": {
    "version_unique_downloads": 14.0, 
    "unique_views": 37.0, 
    "views": 47.0, 
    "version_views": 47.0, 
    "unique_downloads": 14.0, 
    "version_unique_views": 37.0, 
    "volume": 29062368.0, 
    "version_downloads": 16.0, 
    "downloads": 16.0, 
    "version_volume": 29062368.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1007/978-3-030-29390-1_14", 
    "latest_html": "https://zenodo.org/record/3522961", 
    "bucket": "https://zenodo.org/api/files/159cde56-9457-4ba1-8104-88cb5c5fa324", 
    "badge": "https://zenodo.org/badge/doi/10.1007/978-3-030-29390-1_14.svg", 
    "html": "https://zenodo.org/record/3522961", 
    "latest": "https://zenodo.org/api/records/3522961"
  }, 
  "created": "2019-10-30T13:39:47.407702+00:00", 
  "updated": "2020-08-03T12:59:22.091984+00:00", 
  "conceptrecid": "3522960", 
  "revision": 10, 
  "id": 3522961, 
  "metadata": {
    "access_right_category": "success", 
    "embargo_date": "2020-08-03", 
    "doi": "10.1007/978-3-030-29390-1_14", 
    "version": "Accepted pre-print", 
    "language": "eng", 
    "title": "What is Beautiful Continues to be Good: People Images and Algorithmic Inferences on Physical Attractiveness", 
    "license": {
      "id": "CC-BY-NC-ND-4.0"
    }, 
    "notes": "This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement  No 739578 and under Grant Agreement No 810105 and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.", 
    "part_of": {
      "pages": "243-264", 
      "title": "Human-Computer Interaction - INTERACT 2019"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3522960"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3522961"
          }
        }
      ]
    }, 
    "imprint": {
      "publisher": "Springer International Publishing", 
      "place": "Cham"
    }, 
    "communities": [
      {
        "id": "rise-teaming-cyprus"
      }
    ], 
    "grants": [
      {
        "code": "739578", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::739578"
        }, 
        "title": "Research Center on Interactive Media, Smart System and Emerging Technologies", 
        "acronym": "RISE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "810105", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::810105"
        }, 
        "title": "Cyprus Center for Algorithmic Transparency", 
        "acronym": "CyCAT", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Algorithmic bias", 
      "Attractiveness", 
      "Image recognition", 
      "Stereotyping"
    ], 
    "publication_date": "2019-08-23", 
    "creators": [
      {
        "orcid": "0000-0003-3804-5565", 
        "affiliation": "Research Centre on Interactive Media, Smart Systems and Emerging Technologies (RISE) Nicosia Cyprus", 
        "name": "Matsangidou Maria"
      }, 
      {
        "orcid": "0000-0002-7655-7118", 
        "affiliation": "Research Centre on Interactive Media, Smart Systems and Emerging Technologies (RISE)Nicosia Cyprus and Cyprus Center for Algorithmic TransparencyOpen University of Cyprus Nicosia Cyprus", 
        "name": "Otterbacher Jahna"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "description": "<p>Image recognition algorithms that automatically tag or moderate content are crucial in many applications but are increasingly opaque. Given transparency concerns, we focus on understanding how algorithms tag people images and their inferences on attractiveness. Theoretically, attractiveness has an evolutionary basis, guiding mating behaviors, although it also drives social behaviors. We test image-tagging APIs as to whether they encode biases surrounding attractiveness. We use the Chicago Face Database, containing images of diverse individuals, along with subjective norming data and objective facial measurements. The<br>\nalgorithms encode biases surrounding attractiveness, perpetuating the stereotype that &ldquo;what is beautiful is good.&rdquo; Furthermore, women are often misinterpreted as men. We discuss the algorithms&rsquo; reductionist nature, and their potential to infringe on users&rsquo; autonomy and well-being, as well as the ethical and legal considerations for developers. Future services should monitor algorithms&rsquo; behaviors given their prevalence in the information ecosystem and influence on media.</p>"
  }
}
47
16
views
downloads
Views 47
Downloads 16
Data volume 29.1 MB
Unique views 37
Unique downloads 14

Share

Cite as