Journal article Embargoed Access

Efficient Evaluation of Image Quality via Deep-Learning Approximation of Perceptual Metrics

Artusi Alessandro; Banterle Francesco; Carrara Fabio; Moreo Alejandro


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2021-10-07</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional Neural Networks (CNNs)</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Objective Metrics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Image Evaluation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Human Visual System</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">JPEG-XT</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">HDR Imaging</subfield>
  </datafield>
  <controlfield tag="005">20191121115408.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work has been partly supported by the project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739578 (RISE – Call: H2020-WIDESPREAD-01-2016-2017-TeamingPhase2) and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.</subfield>
  </datafield>
  <controlfield tag="001">3522907</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ISTI CNR, Italy</subfield>
    <subfield code="a">Banterle Francesco</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ISTI CNR, Italy</subfield>
    <subfield code="a">Carrara Fabio</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ISTI CNR, Italy</subfield>
    <subfield code="a">Moreo Alejandro</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">embargoed</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-10-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-rise-teaming-cyprus</subfield>
    <subfield code="o">oai:zenodo.org:3522907</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-14</subfield>
    <subfield code="p">IEEE Transactions on Image Processing</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">MRG DeepCamera Group, RISE Ltd</subfield>
    <subfield code="0">(orcid)0000-0002-4502-663X</subfield>
    <subfield code="a">Artusi Alessandro</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Efficient Evaluation of Image Quality via Deep-Learning Approximation of Perceptual Metrics</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rise-teaming-cyprus</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739578</subfield>
    <subfield code="a">Research Center on Interactive Media, Smart System and Emerging Technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;mage metrics based on Human Visual System&amp;nbsp;(HVS) play a remarkable role in the evaluation of complex image&amp;nbsp;processing&amp;nbsp; algorithms. However, mimicking the HVS is known&amp;nbsp;to be complex and computationally expensive (both in terms&amp;nbsp;of time and memory), and its usage is thus limited to a few&amp;nbsp;applications and to small input data. All of this makes such&amp;nbsp;metrics not fully attractive in real-world scenarios. To address&amp;nbsp;these issues, we propose Deep Image Quality Metric (DIQM), a&amp;nbsp;deep-learning approach to learn the global image quality feature&amp;nbsp;(mean-opinion-score). DIQM can emulate existing visual metrics&amp;nbsp;efficiently, reducing the computational costs by more than an&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TIP.2019.2944079</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
30
11
views
downloads
Views 30
Downloads 11
Data volume 238.0 MB
Unique views 28
Unique downloads 10

Share

Cite as