Journal article Open Access

Efficient Evaluation of Image Quality via Deep-Learning Approximation of Perceptual Metrics

Artusi Alessandro; Banterle Francesco; Carrara Fabio; Moreo Alejandro


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3522907</identifier>
  <creators>
    <creator>
      <creatorName>Artusi Alessandro</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4502-663X</nameIdentifier>
      <affiliation>MRG DeepCamera Group, RISE Ltd</affiliation>
    </creator>
    <creator>
      <creatorName>Banterle Francesco</creatorName>
      <affiliation>ISTI CNR, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>Carrara Fabio</creatorName>
      <affiliation>ISTI CNR, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>Moreo Alejandro</creatorName>
      <affiliation>ISTI CNR, Italy</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Efficient Evaluation of Image Quality via Deep-Learning Approximation of Perceptual Metrics</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Convolutional Neural Networks (CNNs)</subject>
    <subject>Objective Metrics</subject>
    <subject>Image Evaluation</subject>
    <subject>Human Visual System</subject>
    <subject>JPEG-XT</subject>
    <subject>HDR Imaging</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-10-07</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3522907</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TIP.2019.2944079</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/rise-teaming-cyprus</relatedIdentifier>
  </relatedIdentifiers>
  <version>Author Manuscript</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;mage metrics based on Human Visual System&amp;nbsp;(HVS) play a remarkable role in the evaluation of complex image&amp;nbsp;processing&amp;nbsp; algorithms. However, mimicking the HVS is known&amp;nbsp;to be complex and computationally expensive (both in terms&amp;nbsp;of time and memory), and its usage is thus limited to a few&amp;nbsp;applications and to small input data. All of this makes such&amp;nbsp;metrics not fully attractive in real-world scenarios. To address&amp;nbsp;these issues, we propose Deep Image Quality Metric (DIQM), a&amp;nbsp;deep-learning approach to learn the global image quality feature&amp;nbsp;(mean-opinion-score). DIQM can emulate existing visual metrics&amp;nbsp;efficiently, reducing the computational costs by more than an&lt;/p&gt;</description>
    <description descriptionType="Other">This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement  No 739578 and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/739578/">739578</awardNumber>
      <awardTitle>Research Center on Interactive Media, Smart System and Emerging Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
59
28
views
downloads
Views 59
Downloads 28
Data volume 605.9 MB
Unique views 53
Unique downloads 27

Share

Cite as