Journal article Open Access

Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times

Daria B. Kokh; Tom Kaufmann; Bastian Kister; Rebecca C. Wade


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/f834a789-f32e-4a16-9665-60fb86fc2955/fmolb-06-00036.pdf"
      }, 
      "checksum": "md5:63354b03e1179eba11872cb1b7724a9a", 
      "bucket": "f834a789-f32e-4a16-9665-60fb86fc2955", 
      "key": "fmolb-06-00036.pdf", 
      "type": "pdf", 
      "size": 7578276
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f834a789-f32e-4a16-9665-60fb86fc2955/HSP90.tar.gz"
      }, 
      "checksum": "md5:6a80da74f53e648162a3d6755d456a16", 
      "bucket": "f834a789-f32e-4a16-9665-60fb86fc2955", 
      "key": "HSP90.tar.gz", 
      "type": "gz", 
      "size": 296457444
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f834a789-f32e-4a16-9665-60fb86fc2955/ML-HSP90-v2.1.tar.gz"
      }, 
      "checksum": "md5:9e911c3185e3217bd62622ff894764ff", 
      "bucket": "f834a789-f32e-4a16-9665-60fb86fc2955", 
      "key": "ML-HSP90-v2.1.tar.gz", 
      "type": "gz", 
      "size": 35455345
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f834a789-f32e-4a16-9665-60fb86fc2955/README.md"
      }, 
      "checksum": "md5:90c2b90ba7cec8c8864d019998d45203", 
      "bucket": "f834a789-f32e-4a16-9665-60fb86fc2955", 
      "key": "README.md", 
      "type": "md", 
      "size": 7329
    }
  ], 
  "owners": [
    63596
  ], 
  "doi": "10.5281/zenodo.3522753", 
  "stats": {
    "version_unique_downloads": 92.0, 
    "unique_views": 23.0, 
    "views": 26.0, 
    "version_views": 442.0, 
    "unique_downloads": 11.0, 
    "version_unique_views": 370.0, 
    "volume": 1395892285.0, 
    "version_downloads": 181.0, 
    "downloads": 22.0, 
    "version_volume": 4034543483.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3522753", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2611620", 
    "bucket": "https://zenodo.org/api/files/f834a789-f32e-4a16-9665-60fb86fc2955", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2611620.svg", 
    "html": "https://zenodo.org/record/3522753", 
    "latest_html": "https://zenodo.org/record/3522753", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3522753.svg", 
    "latest": "https://zenodo.org/api/records/3522753"
  }, 
  "conceptdoi": "10.5281/zenodo.2611620", 
  "created": "2021-07-28T19:09:08.250512+00:00", 
  "updated": "2021-07-29T01:48:20.404450+00:00", 
  "conceptrecid": "2611620", 
  "revision": 3, 
  "id": 3522753, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3522753", 
    "version": "2.3", 
    "contributors": [
      {
        "orcid": "0000-0002-4687-6572", 
        "affiliation": "Heidelberg Institute for Theoretical Studies (HITS),Heidelberg, Germany", 
        "type": "ContactPerson", 
        "name": "Daria B. Kokh"
      }, 
      {
        "affiliation": "Heidelberg University; Heidelberg Institute for Theoretical Studies (HITS),Heidelberg, Germany", 
        "type": "Researcher", 
        "name": "Tom Kaufmann"
      }, 
      {
        "affiliation": "Heidelberg University, Heidelberg Institute for Theoretical Studies (HITS); Heidelberg, Germany", 
        "type": "Researcher", 
        "name": "Bastian Kister"
      }, 
      {
        "affiliation": "Heidelberg University, Heidelberg Institute for Theoretical Studies (HITS); Heidelberg, Germany", 
        "type": "Researcher", 
        "name": "Rebecca C. Wade"
      }
    ], 
    "title": "Machine Learning Analysis of \u03c4RAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.3389/fmolb.2019.00036", 
        "relation": "isCitedBy", 
        "resource_type": "publication-article"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2611620", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 5, 
          "index": 4, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2611620"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3522753"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "785907", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::785907"
        }, 
        "title": "Human Brain Project Specific Grant Agreement 2", 
        "acronym": "HBP SGA2", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "211528", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::211528"
        }, 
        "title": "Partnership for Advanced Computing in Europe", 
        "acronym": "PRACE", 
        "program": "FP7", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "115366", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::115366"
        }, 
        "title": "Kinetics for Drug Discovery (K4DD)", 
        "acronym": "K4DD", 
        "program": "FP7", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Machine Learning", 
      "tauRAMD", 
      "drug-protein residence time", 
      "structure-kinetic relationship (SKRs)", 
      "drug-target binding kinetics"
    ], 
    "publication_date": "2019-03-27", 
    "creators": [
      {
        "orcid": "0000-0002-4687-6572", 
        "affiliation": "HITS gGmbH", 
        "name": "Daria B. Kokh"
      }, 
      {
        "affiliation": "HITS gGmbH, Heidelberg University", 
        "name": "Tom Kaufmann"
      }, 
      {
        "affiliation": "HITS gGmbH, Heidelberg University", 
        "name": "Bastian Kister"
      }, 
      {
        "orcid": "0000-0001-5951-8670", 
        "affiliation": "HITS gGmbH, Heidelberg University", 
        "name": "Rebecca C. Wade"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "description": "<p>The manuscript, supporting data and codes for the manuscript:</p>\n\n<p>&quot;Machine learning analysis of tauRAMD trajectories to decipher molecular determinants of drug-target residence times&quot; of&nbsp; Kokh DB, Kaufman T, Kister B, Wade RC., Front. Mol. Biosci., 24 May 2019 | <a href=\"https://doi.org/10.3389/fmolb.2019.00036\">https://doi.org/10.3389/fmolb.2019.00036</a></p>\n\n<p><a href=\"https://zenodo.org/api/files/81bc9d41-936a-41b2-9a55-fc167f9f476f/fmolb-06-00036.pdf?versionId=a85dc17f-6e49-4cd8-88db-368db5d3e300\">fmolb-06-00036.pdf&nbsp; </a>- paper<br>\n<a href=\"https://zenodo.org/api/files/81bc9d41-936a-41b2-9a55-fc167f9f476f/HSP90.tar.gz\">HSP90.tar.gz&nbsp; </a>- topology and coordinate files for all&nbsp; complexes used in RAMD simulations</p>\n\n<p><a href=\"https://zenodo.org/api/files/81bc9d41-936a-41b2-9a55-fc167f9f476f/ML-HSP90-v2.1.tar.gz?versionId=4d8856a1-5ca4-4f70-9dd3-bf6e63107cc6\">ML-HSP90-v2.1.tar.gz&nbsp; </a>- scripts and input data for ML analysis of ligand dissociation reported in the paper<br>\n<br>\n&nbsp;</p>"
  }
}
442
181
views
downloads
All versions This version
Views 44226
Downloads 18122
Data volume 4.0 GB1.4 GB
Unique views 37023
Unique downloads 9211

Share

Cite as