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Abstract

Recent empirical papers found that, contrary to popular belief, wholesale funding markets
did not cease to function during the Subprime crisis. This paper shows that this resilience
may be explained by the fact that strong interconnections between banks give them an
incentive to subsidize each other. We specify a model in which financial institutions that
share similar portfolios provide each other with favorable lending conditions in order to
protect themselves against fire sales. The resulting subsidy drives rates down and leads to a
more clustered interbank network, particularly during crises. Overall the subsidy is desirable
from a systemic risk perspective.
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1 Introduction

At the height of the financial crisis, the fed put in place the dollar swap line, a lending scheme
designed to accommodate the need for dollars of the other central banks. The mechanism initially
took the form of a market format auctioning which led the ECB to borrow at a maximum rate
of 12% on October 8, 2008. However on October 13, the Fed changed the lending scheme to full-
allotment format which allowed central banks to borrow limitless amounts at a predetermined,
much lower rate.

When explaining why the Fed decided to forego interest payments, the chairman of the Fed
of New York, T. Geithner, said: "Not that we have an obligation in this sense, but we have
an interest in helping these guys mitigate the problems they face" (FOMC Transcripts, 2008:
Geithner, Oct. 28-29, p. 21). In other words the decision by the Fed to subsidize the ECB was
motivated by the strength of the interconnections between both central banks. Because private
financial institutions also share strong links in terms of direct exposures, common asset holdings,
or reputational risk; a similar mechanism may be at play in wholesale funding markets.

This paper develops a model in which common asset holdings give banks an incentive to
provide each other with favourable funding conditions, in order to protect themselves from fire
sales. The intuition is as follows. Consider a financial system in which banks engage in fire
selling when in financial distress. Two banks L (for lender) and B (for borrower) have overlapping
portfolios, and a liquidity shock leads bank B to be in need of short-term funds. Because asset
sales by B would depress asset prices and consequently negatively impact the value of portfolio
of L, L has an interest in limiting the risk of B by lending at an artificially low rate. This
mechanism is referred to as the common interest subsidy. It is found to be particularly strong
when liquidity risk is high because the incentive to protect borrowers is higher in that context.

Formally the model is based on including potential asset sales in the profits functions of the
borrowing and the lending bank. Because a lower rate decreases the odds attached to fire sales,
the profit-maximizing rate for the lender r∗ falls with ω, the amount of common asset holdings
between both banks. This relationship is studied analytically and computationally.

The framework easily generalizes to N banks for a given network of asset holdings, leading to
interesting results at the interbank market level. First, the common interest subsidy implies that
the average rate on the interbank market should be below what borrower risk suggests, particularly
during crises. Such a mechanism is compatible with the recent literature on wholesale funding
markets during the Subprime crisis who showed that – contrary to popular belief – rates rose
moderately and with limited dispersion in 2008-2009 (see for instance Angelini et al., 2011,
Afonso et al., 2011, or Gabrieli and Georg, 2014). 1

Second, the model implies that a loan is more likely to take place between banks that are
closely related in terms of asset holdings, since related banks provide each other with favourable
conditions. Therefore the interbank network should be clustered, particularly during crises. This
prediction is also in line with the dedicated literature (e.g., Craig et al., 2015, Bräuning and
Fecht, 2016, Kobayashi and Takaguchi, 2018).

1The same broad conclusion applies to the market for certificates of deposits (Pérignon et al., 2018) or to the
repo markets (Mancini et al., 2015, Boissel et al., 2017, Krishnamurthy et al., 2014, Copeland et al., 2014).
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This paper contributes to a small theoretical literature linking asset holdings to the interbank
market. Rogers and Veraart (2013) consider the incentive for a given set of banks to bail out a
bank B, depending on the losses that B incurs to the system through asset prices. Acharya et al.
(2012) provide a model in which a cash rich bank may adopt predatory behavior with respect
to a cash poor bank when assets are bank-specific. Caballero and Simsek (2013) show that fire
sales are positively correlated to the uncertainty around interbank lending exposures. Finally
the closest paper to this study comes from Leitner (2005), who specifies a model in which the
threat of contagion gives safe banks an incentive to bail out risky ones.

The key difference between this literature and our study is that papers such as Leitner (2005)
take a normative approach, focusing on the impact of the subsidy on the choices for banks at the
micro level. In contrast, the main contribution of our model is to have clear-cut implications at
the interbank market level – namely a lower average rate and a clustering of the lending network
– that are consistent with the seemingly puzzling features observed during the 2008 crisis.

The dual impact of the common interest subsidy raises the question of its total impact on
financial stability. Indeed while privileged relationship help limit borrower risk through lower
rates (Temizsoy et al., 2015), an undiversified lending network usually lowers the ability of the
system to absorb shocks (Gai and Kapadia, 2010). The second contribution of this paper is to
estimate both effects in order to draw a conclusion on the desirability of the common interest
subsidy from a systemic risk perspective. We do so by running Monte-Carlo simulations of the
N-bank model in which bankruptcies spread across bank balance sheets through sales until the
situation stabilizes, as in Greenwood et al. (2015). We then draw the probability that all banks
go bankrupt, which indicates systemic risk; as well as contagion statistics such as the likelihood
that one bank i survives if another bank j failed.

We find that the subsidy does foster contagion, particularly between banks with a high level of
asset commonality. Nevertheless this effect is dominated by the stabilizing impact of lower rates
on borrower risk, and overall the common interest subsidy enhances systemic stability. In this way
the paper suggests that popular models of contagion (Eisenberg and Noe, 2001, Cifuentes et al.,
2005) may slightly overestimate the level systemic risk by failing to account for the common
interest of all participants to see it survive.

The rest of the paper is organized as follows. Section 2 presents a 2-banks framework, and
describes the solving procedure to obtain the equilibrium interest rate for a given bank couple.
Section 3 presents the equilibrium interest rate, and studies how it changes with the level of
commonality between the 2 banks and the size of the loan. Section 4 generalizes the model to
many banks and studies the features of the interbank market through simulations. Section 5
discusses the impact of the common interests subsidy on systemic stability. Section 6 concludes.
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2 The model

2.1 Framework

2.1.1 Balance sheets in t = 0

Consider an economy in which credit is intermediated by two banks: B (for borrower) and L (for
lender). There are three periods: t = 0, 1, 2. On the liability side, both banks finance themselves
through capital K and deposits D. On the asset side, three assets coexist:

- asset b, which is held exclusively by bank B at a quantity of qb,0
- asset l, which is held exclusively by bank L at a quantity of ql,0
- asset c, which is held by both banks, at quantities of qBc,0 and qLc,0 for banks B and L

respectively.
Denoting by pi,t the price of an asset i in time t, the balance sheet in t = 0 of a given bank

I is given by:

Assets Liabilities

Asset held by I only pi,0qi,0 Deposits DI
0

Asset held by both banks pc,0q
I
c,0 Capital KI

0

This balance sheet will evolve following random shocks to two variables: deposits D and
asset prices p. To capture the fact that the banks perform maturity transformation, shocks to
deposits occur in t = 1−ε while shocks to asset prices occur in t = 2−ε, meaning that a maturity
mismatch is embedded in the balance sheet.

2.1.2 Liquidity shock and the lending market in t = 1

The t = 1− ε shock to deposits (or liquidity shock) for a given bank I is defined as:

εDI = DI
1−ε −DI

0

where εDI follows any symmetric distribution with moments denoted by {µd, σ2d}.
To ensure that a market for liquidity can always exist, we set that εDI is symmetric: an inflow

of liquidity εD in bank L is matched by an outflow εD in the bank B. Mathematically this means
that εDB = −εD and εDL = εD.

Bank B, who received the negative liquidity shock, must find a sum of εD between t = 1− ε
and t = 1 to honor its commitment to its depositors. This can be done in two ways. First, bank
B may borrow εD from bank L at a rate r. Second, it may quickly sell a quantity 4qi,1 of assets
on the market to price elastic investors who clear the market, for a total amount of εD. The
timing is as follows: in t = 1 − ε bank B demands a loan. Bank L then responds by offering a
given interest rate r. Bank B either accepts the loan in t = 1, or refuses and immediately sells
assets.

Outside investors – who take the other side of bank sales – are set to be long-termistic
agents who only care about the long term fundamental value of assets FV , and have a standard
mean-variance utility function with a risk aversion of 1

τ . This modeling yields the well-known
expression for desired holdings of a given asset i at a given time t :
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qdi,t = τ
FVi − pi,t
σ2FV

.

First-differencing this expression gives the change in demand from outside investors between t−1

and t, which must be equal to the the quantity of asset i sold by banks over the same period
4qi,t. Market equilibrium then yields :

4pi,t = −λ4qi,t (1)

where λ =
σ2
FV
τ . Equation (1) states that selling assets leads to a drop in asset prices.

The balance sheets for both banks in t = 1 in the loan and no-loan case can be found in
appendix A.

2.1.3 Asset shocks and bankruptcies in t = 2

For any asset i, the t = 2− ε price shock is defined as:

εpi = pi,2−ε − pi,1

where εpi,t follows any symmetric distribution with moments {µp, σ2p}.
A bank immediately defaults in t = 2 − ε if it loses more than its capital, i.e. if ΠI =

KI
2−ε −KI

0 < −KI
0 . Both banks may be declared bankrupt at this point, but bank L may also

be declared bankrupt later, in t = 2.2 Indeed a failure of bank B involves two types of costs for
bank L. First, any existing loan is defaulted on, leading a net loss of εpi for bank L. Second, when
a bank fails, a share δ of its assets is immediately sold between t = 2 − ε and t = 2. Formally
this means that a bankrupt bank B sells a total quantity δqBc,0 of the common asset, leading to a
price decline of λδqBc,0, that lowers the value of the portfolio of bank L by an amount qLc,0λδqBc,0.

The last modeling feature is to specify that bankruptcy is hurtful for banks by assigning a
lump sum cost of −F to it. Denoting by dI , the event of a default in bank I in t = 2, and by d̄I
its survival, the utility function of a bank I is expressed as follows: UI |d̄I = ΠI

UI |dI = −F

if ΠI > −KI
0

if ΠI < −KI
0

(2)

where the likelihood of a bankruptcy is:

P (ΠI < −KI
0 ) (3)

Figure 1 summarizes the possible utilities for both banks.
2Note that we only consider knock-on effects from the liquidity poor bank B to the liquidity rich bank L.

Including the possibility of contagion from bank L to bank B would change the expression for the expected utility
of bank B in the case of a loan. This would make the model much more complex, with little benefit because the
quantitative impact of contagion on the expected utility of bank B is very small, as the probability that contagion
occurs is near zero.
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Figure 1: Profit tree diagram
This figure summarizes the profit for each bank in each possible case and the probability associated with each

case, in t = 2− ε and t = 2.

Having laid down the framework, we may turn to the solving procedure. To end this section,
figure 2 provides a summary of the sequence of events in the model. The figure shows that two
rounds of asset sales may occur: the first 4qi,1 at the end of the first period to obtain liquidity
in the absence of a loan, the second 4qi,2 at the end of the second period in the event of a
bankruptcy.

Figure 2: Model timeline
This figure presents the chronology of occurrence for the events considered in this paper.

2.2 Bank profits and solving procedure

2.2.1 Bank profits

This section presents the profit functions for both banks, which will be used to obtain the equilib-
rium on the lending market. Two cases must be studied in parallel: one in which a loan occurred
in t = 1, and on in which no loan occurred. Detailed derivations using balance sheets can be
found in appendix B.

The loan case
When a loan has been granted in t = 1, the interests must be repaid in t = 2. Profit for the

borrower between t = 0 and t = 2 is then given by:
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ΠB = −rεD + qb,0ε
p
b + qBc,0ε

p
c (4)

where rεD represents interest payments, while qBb,0ε
p
b and q

B
c,0ε

p
c represents the profits/losses from

the realizations of asset shocks.
For bank L, the profit function depends on whether bank B survived in t = 2− ε. In case of

survival, B simply pays back the loan which yields:

ΠL|d̄B = rεD + ql,0ε
p
l + qLc,0ε

p
c . (5)

However if bank B failed, it defaults on its loan and sells assets between t = 2 − ε and t = 2,
leading to the following profit for L:

ΠL|dB = −εD + ql,0ε
p
l + qLc,0ε

p
c − qLc,0λδqBc,0 (6)

where −εD represents the net loss from loan default, while qLc,0λδqBc,0 captures the impact of fire
sales from bank B on the portfolio of bank L.

The no-loan case
Without a loan, profit for bank B is impacted by asset sales in the first period 4q1, as well

as the realizations of asset shocks in t = 2 on the remaining assets. This yields:

Πnl
B = −qb,0λ4qb,1 − qcλ4qBc,1 + (qb,0 −4qb,1)εpb + (qBc,0 −4qBc,1)εpc (7)

where the first two terms refer to the losses from early asset sales, and the last two represent the
profits stemming from the performance of the assets that were not sold in t = 1.

For bank L if B survives, the sales of the common asset by bank B in t = 1 negatively
impacts profits. Formally:

Πnl
L |d̄B = −qLc,0λ4qBc,1 + ql,0ε

p
l + qLc,0ε

p
c . (8)

Finally when bank B fails, it sells some of its remaining assets until it reaches the proportion δ
associated with failed banks. The expression for the profit of L is thus :

Πnl
L |dB = −qLc,0λδqBc,0 + ql,0ε

p
l + qLc,0ε

p
c . (9)

2.2.2 Solving procedure

Let us now introduce the method for finding the lending market equilibrium between B and L.
This section provides a general outline suited to the use on numerical methods, on which the rest
of the paper is based. Nevertheless a tractable version of the model exists when the variance of
the common asset c is set to zero. This case is solved in appendix C and provides a step by step
derivation of the equilibrium rate which the reader may find helpful.

Step 1: finding the optimal rate for bank L
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The first step towards obtaining the equilibrium is to find the optimal rate for the lending
bank r∗, which is done by maximizing the t = 2 utility of bank L as expected in t = 1. Formally
this expected utility is given by:

E(UL) = P (dB , dL) ∗ (−F ) + P (d̄B , dL) ∗ (−F ) + P (dB , d̄L) ∗ΠL|dB + P (d̄B , d̄L) ∗ΠL|d̄B . (10)

All the probabilities of failure/survival that feature in (10) can be drawn from the profit functions
in the loan case, given in the previous section. For instance, the probability that both banks
survive P (d̄B, d̄L) can be decomposed as:

P (d̄B, d̄L) = P (d̄B) ∗ P (d̄L|d̄B) = P (ΠB > −KB
0 ) ∗ P (ΠL > −KL

0 |ΠB > −KB
0 )

Therefore plugging expressions (4) to (6) into (10) gives E(UL) its final expression. The ex-
pected profit maximizing rate r∗ then appears as the interest rate r that satisfies the equality
∂E(UL)/∂r = 0, which is uniquely defined.

Step 2: finding the reservation rate for bank B
The second step to obtain the equilibrium rate is to get the maximum rate r̄ that the borrower

is willing to accept. Asset sales are costly for the seller since they lower the value of the assets
that remain in his portfolio. In t = 1, the borrower must compare this cost to that of paying an
amount rεD in interests to the lender. The maximum interest rate that bank B is willing to pay
will then be defined by the value of r for which expected utilities in the loan and no-loan cases
are equivalent. Formally:

E(UB) = E(UnlB ).

Both E(UB) and E(UnlB ) are obtained in the same way as E(UL), using the profit functions of
section 2.2.1. The reservation rate r̄ then appears, and is also unique.

Step 3: drawing the equilibrium
Once r∗ and r̄ are obtained, two possibilities emerge. First, the rate that bank L wishes to

implement is lower than the threshold rate, i.e. r∗ < r̄. In this case bank B accepts r = r∗ since
the borrower benefits unambiguously from a lower rate. In the second case, the rate that the
lender would to like to charge is higher than the maximum rate that the borrower is willing to
accept, i.e. r∗ > r̄. Here bank L is constrained, and the best possible rate it can get is r = r̄.

The utility maximizing rate for bank L, under the constraint that bank B participates, is
thus given by:

r = min(r∗, r̄)

which represents the equilibrium interest rate on the interbank market.3

3Note that r is the interest rate should a loan take place, yet it is not clear that a loan will take place at this
point. Indeed in theory bank L has no obligation to lend, and may prefer to let bank B sell assets if the interest
rate r is too low. However this case never occurs in the parameter sets used in this paper, and thus we do not
consider it any further.
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The algorithm follows the three-steps procedure just described to obtain the market equilib-
rium.4

3 The equilibrium interest rate between two banks

This section calibrates the model and studies the equilibrium interest rate between bank B and
bank L.

3.1 Calibration and implementation

We first set that both banks have symmetric asset holdings, i.e. ql,0 = qb,0 = qi,0 and qLc,0 =

qBc,0 = qIc,0; and normalize all asset prices in t = 0 to 1.
This allows us to define:

qIc,0 = ω(DI
0 +KI

0 ) (11)

and
qi,0 = (1− ω)(DI

0 +KI
0 ) (12)

where ω is the share of the common asset over total assets for both banks. This parameter
represents the amount of commonality between them, which will be allowed to vary.

The quantity of deposits in t = 0 is set to 9 (i.e. DB
0 = DL

0 = 9) while the amount of capital
is set to 1 (i.e. KB

0 = KL
0 = 1). This yields a capital ratio of 10%, which appears consistent

with casual observation.5 Assets shocks are normally distributed with moments µ = 0.1 and
σ = 0.2, which implies a Sharpe ratio of 0.5 that is in line with the S&P500 since its creation.6

The impact of a sale on prices λ is set to 0.1, following a study by Coval and Stafford (2007) who
found an average abnormal returns of −10.1% following a period of fire sales on a specific asset.

Two parameters are more difficult to calibrate because they are unobservable and/or con-
stantly changing: the utility cost of failure F , and the share δ of the bank’s assets that are
immediately sold following failure. For both parameters we follow the same method: we choose
a given value, and consider alternatives in appendix D.7

λ is set to 0.1 which means that sales will have a small but significant effect on prices. F is
set to 5, which represents half of the total exposure at period t = 0. Finally we specify δ = 0.3,
meaning that a bank that goes bankrupt immediately sells 30 percent of its remaining assets.

4A slight complexity arises from the fact that both banks are not independent since they share the common
asset. A failure/survival of bank B has implications for the distribution of the common asset c, and consequently on
the distribution of the profits of bank L. To account for this, we use Bayesian inference to compute the probability
distribution of εpc , knowing that bank B failed or survived in t = 2 − ε. We then use this new distribution of εpc
to get the probability that bank L fails in t = 2.

5According to the IMF, the world’s banks capital to asset ratio ranges between 9.78% and 10.75% from 2010
to 2017 and the tier 1 leverage ratio of U.S. banks was 9.76% in the first quarter of 2019.

6Assuming reinvested dividends. Data taken from Robert Shiller’s page
http://www.econ.yale.edu/~shiller/data.htm.

7We also consider alternative values for λ.
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3.2 The equilibrium interest rate as a function of cross-asset holdings

This subsection presents the equilibrium interest rate r as a function of ω, the level of common-
ality in the banks’ portfolios. The following applies to a specific liquidity shock εD = 1, but
other values for εD are considered in appendix D.

Figure 3 plots the maximum rate that the lender is willing to accept r̄ (solid line), the rate that
the lender would like to charge r∗ (dashed line), and the equilibrium interest rate r = min(r̄, r∗)

(line with circle markers); for levels of commonality ω between 0.1 and 0.9.

Figure 3: Equilibrium interest rate with εD = 1
This figure represents the interest rate that bank L would like to charge r∗ (dashed line), the maximum rate

that bank B is willing to accept r̄ (solid line) and the equilibrium interest rate r (with circle markers) for different
shares of common asset ω. The equilibrium interest rate r is defined as min(r∗, r̄).

The first observation is that r∗, the profit-maximizing rate for the lender, is globally decreas-
ing with the level of commonality ω. This captures the key mechanism: when the portfolios of
the two banks become similar, bank L becomes more exposed to a default of bank B, through
the possibility of fire sales in the common asset c. This gives bank L an incentive to charge low
interest rates to keep the default risk of bank B at a low level, and thus indirectly protect itself.

Nevertheless, it is interesting to note that above a given threshold of similarity between both
portfolios, the incentive to subsidize the borrower starts to decrease. The reason is that past a
certain level of similarity in the asset structure, the fates of the banks become so closely tied
together that bank L is bounded to fail if bank B fails, regardless of the loan. Bank L then
becomes better off betting on survival, and r∗ increases slightly.

Turning to r̄, we note that the maximum rate that bank B may accept is U-shaped. This
reflects the evolution of the probability of default for bank B, which finds its minimum when the
bank holds both assets in equal measure. The intuition is as follows: when default is less likely,
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the borrowing bank is more willing to take the risk of selling assets, which translates into a lower
threshold interest rate.

Moving on to the equilibrium rate r = min(r∗, r̄), we observe that r = r̄ when ω is low.
However as r∗ falls with ω relative to r̄ , the situation reverses and we have r = r∗. This latter
case implies that the lender offers a rate that is lower than the one it could obtain r̄, in order
to keep the risk of its borrower at bay. The distance between the offered rate and the rate that
bank B was prepared to pay, r̄−r∗, can be seen as an indicator of the amount of interest revenue
that the lender is willing to forego. It is represented by the shaded zone in the figure, and rises
monotonically with the level of similarity between both banks, implying that the incentive to
subsidize increases with the level of commonality between banks.

Appendix D checks the robustness of the relationship between r and ω. All tests appear to
have the expected impact.

3.3 Interest rate and liquidity risk

Having established that a common interest subsidy may exist between two given banks, we seek
to study how its magnitude may change with market conditions. In particular, an interesting
question in our context lies with whether the incentive to subsidize borrowers grows stronger
when liquidity risk rises, since the presence of a safety net for borrowers may be particularly
desirable in that context.

To investigate, figure 4 plots the evolution of equilibrium rate as a function of the size of
the liquidity shock (between εD = 0.1 and εD = 3), for two banks with a fixed level of asset
commonality ω = 0.5. To highlight the impact of the common asset subsidy, we compare the
results of our framework (full line) to a framework in which bank L does not account for the
possibility of fire sales by bank B in its maximization problem (dashed line).
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Figure 4: Equilibrium interest rate across values of εD

This figure plots the equilibrium interest rate r as a function of the size of the liquidity shock εD, when
ωD = 0.5. The full line gives r when banks include potential fire sales in their utility function (the subsidy case),
the dashed line represents the case in which banks do not account for asset commonalities (no subsidy).

The key information conveyed by figure 4 is that the common interest subsidy has a negative
impact on rates for realizations of εD above εD = 1.3. The subsidy kicks in when the liquidity
needs of borrowers are large because borrowers carry more risk and the impact of a default is
larger in this context. This gives lenders a stronger incentive to forego interest payments in
exchange for lower borrower risk. Nevertheless it is interesting to see that the impact of the
subsidy decreases between εD = 1.3 and εD = 3. This reflects the "betting on survival" effect
highlighted in the previous section.

Despite this small counter-balancing effect, figure 4 clearly implies that the size of the common
interest subsidy increases as the variance of liquidity shocks rises. This notably means that, in
times of crisis, the common interest subsidy should exert a calming influence on rates.

This result may help to shed light on the seemingly puzzling behavior of wholesale markets
during the Subprime crisis, which have been found to have been remarkably resilient by recent
studies (Angelini et al., 2011, Afonso et al., 2011, Pérignon et al., 2018). If the common interest
subsidy draws a wedge between the rate a given borrower secures and the rate suggested by his
risk profile, it is not surprising that rates reacted mildly to rising counterparty risk in 2008.

It is worth noting that empirical studies on relationship lending seem supportive of the idea
that common interests have a calming influence the interbank market during crises. Indeed sev-
eral studies ( e.g. Bräuning and Fecht, 2016; Affinito, 2012; Cocco et al., 2009) have showed
that "relationship lending has a negative effect on the bilateral interest rate when market condi-
tionssuffer from credit risk uncertainty", in the words of Bräuning and Fecht (2016). This cross
sectional pattern can be explained, among other factors, by the common interest subsidy.
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4 Common interests subsidy and interbank lending

This section extends the framework of section III to a system of N-banks, and studies the
interbank lending produced by this structure.

4.1 Generalizing the 2 banks model

4.1.1 modeling

The baseline structure of the N-banks model is designed to allow any equilibrium interest rate
between two given banks in the system to be defined by the model calibrated in section 3. This
translates into two conditions. First, the asset holding network is such that, for any bank couple
with assets in common, the quantity of the common assets held by both banks is the same.
Second, the vector of bank liquidity shocks must ensure that negative shock experienced by
borrowers is equal to the positive shock received by lenders.

To respect the latter condition, the liquidity shock εD is set to be unique and symmetric,
meaning that it will be positive for half of the banks and negative for the other half. This
structure is designed to yield an open market for liquidity in t = 1 in which all banks appear.
An alternative specification will be considered in section 5.

To respect the former condition, we specify the following network. In an economy where
banks collectively own N = 10 assets, bank A owns assets 1, 2, 3; while bank B owns assets 2,
3, 4, etc. This structure is called circulant and is fairly classic in the network literature (see for
instance Raffestin, 2014). Figure 5-a provides a graphical expression of the asset holdings, and
figure 5-b shows how these holdings translate into links between banks.

(a) Asset holdings (b) Links between banks

Figure 5: Circulant network
This figure represents the assets held by every bank. 5-a connects each bank to the assets it owns, where

banks are indicated with letters and assets are numbered. For instance bank A owns assets 1,2, and 3. Figure 5-b
connects banks according to the assets they have in common, where a thick line indicates 2 assets in common,
and a thin line means 1 asset in common.

This asset holding network implies that each bank has two "close neighbors" with whom it
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shares 2 assets, and 2 "distant neighbors" with whom it shares only one asset. Close and distant
relationships are represented in figure 5-b by the thick and thin lines, respectively. Finally each
bank co-exists with 5 "outsiders" with whom it shares no assets.

As with the liquidity shock, an alternative structure for asset holdings will be considered in
section 5. However the structure of 10 banks each holding 3 assets is kept throughout the paper.
The reason is that both the number of banks and the number of assets have no qualitative impact
on the result. The only real requirement is to have different levels of asset commonalities for
different bank couples.

4.1.2 Matching procedure and Monte-Carlo simulations

The framework presented defines a single equilibrium interest rate for a given bank couple and
liquidity shock εD. However to characterize the interbank network one must specify how banks
are matched.

We set the matching procedure to work sequentially. One randomly selected cash poor bank
is served first, and its lender is removed from the pool of eligible lenders; and so on. This method
is the simplest way of modeling the network creation process, and has already been used in the
network literature (see for instance Anand et al., 2012). We store, for each lending relationship,
the rate offered and the banks involved.

For some realizations of εD the close neighbor, the distant neighbor, and the outsider all offer
the same rate r = r̄. In this case the lender is chosen randomly by the borrower. For other
realizations of εD, the rates offered to bank B will change with the distance in the network. In
this case, the borrower chooses the lowest rate, as he benefits unambiguously from cheaper loans.

Contrary to the previous section who studied a single realization of the liquidity shock εD,
this section presents the results from a Monte-Carlo simulation of 100, 000 realizations of εD,
which gives 100, 000 interbank lending networks.

The liquidity shock εD is drawn from a Gaussian. Three different values for the variance
of εD are considered, in order to study the interbank market for varying levels of liquidity risk:
σ2d = 0.5, σ2d = 1 and σ2d = 1.5.

4.2 Results

4.2.1 Equilibrium interest rates at the system level

We start by considering interest rates at the system level. As a first step, figure 6 plots the
bilateral equilibrium interest rates as a function of the liquidity shock, depending on the nature
of the of the two banks considered (close, distant, outsider). As expected, the figure resembles
figure 4: banks who share connections through asset holdings use lower rates on average.
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Figure 6: Equilibrium interest rate with ω = {0; 0.33; 0.66}
This figure plots the bilateral equilibrium interest rates as a function of the liquidity shock, depending on

the nature of the of the two banks considered (close, distant, outsider). The full line gives r when the two banks
share no assets, the dashed line represents the case in which banks share 1 asset and the dotted-dashed line the
case in which banks share 2 assets.

We now describe how these bilateral rates scatter in the interbank market. Figure 7 plots the
distribution of lending rates from the Monte-Carlo simulation, grouping all loans, for the three
levels of liquidity risk. The y-axis uses a logarithmic scale.

Figure 7: Distribution of lending rates when liquidity risk rises
This figure represents the the distribution of lending rates from the Monte-Carlo simulation, for different

levels of liquidity risk σ2
d. The y-axis uses a logarithmic scale.
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Figure 7 shows that lower liquidity risk is associated with a lower variance and a higher
expected value for rates. This comes from the fact that small realizations of εD do not incentivize
lenders to subsidize, because borrowers carry less risk and the impact of a default is more
manageable. Nearly all lending is done at the same rate of 0.40 which corresponds to the
maximum rate that the borrower can accept. However, as liquidity shocks become larger, so
does the incentive to help borrowers. A growing proportion of lending is done below 0.40, and
the average rate on the market falls under the influence of the common interests subsidy.

The force behind the change in the distribution of equilibrium interest rates is the increase
in the share of lending that is being done between close (or to a lesser extent distant) lenders.
The following section investigates this point by studying the cross-sectional patterns of interbank
lending.

4.2.2 The interbank lending network

Figure 8 plots the average interbank lending network produced by the Monte Carlo simulation.
Again we consider three values for the variance σ2d = 0.5; σ2d = 1 , and σ2d = 1.5.

Figure 8: The interbank lending network when liquidity risk rises
This figure represents the lending patterns in the N = 10 interbank network for different levels of liquidity

risk σ2
d. The width of the lines represents the average volume of loans between two banks in the the Monte-Carlo

simulation.

The figure shows that the interbank lending network becomes increasingly clustered as liquidity
risk rises. When the variance of the liquidity shock σ2d is equal 0.5 and for a given borrower, a
close neighbor is as likely to enter a loan agreement as a distant neighbor or an outsider. This
case resembles the network that would prevail without a common interest subsidy, in which all
banks would have an equal chance of entering a lending relationship. However when the variance
equals 1, a close neighbor becomes 27% more likely to lend than a distant neighbor, who is
himself 2% more likely to lend than an outsider. When σ2d reaches 1.5, these two values rise to
63% and 11% respectively. Note how the interbank lending network converges towards the asset
holding network represented in figure 5-b when σ2d rises.

The tendency to cluster is natural: because neighbors sometimes provide each other with
favourable interest rates, they are more likely to engage in a lending relationship. This finding
is in line with several empirical studies. In particular, Affinito (2012) and Cocco et al. (2009)
document that close banks lent to each other at higher volumes in addition to lower rates during
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the crisis.

5 Common interests subsidy and financial stability

The previous section highlighted two opposing impacts of the common interest subsidy on fi-
nancial stability. On one hand, it allows borrowers to secure lower rates which enhances their
robustness (Temizsoy et al., 2015). On the other hand, it leads to a clustered banking network,
which should foster contagion (Gai and Kapadia, 2010). This section seeks to compare both
effects and draw a conclusion of the desirability of the common interest subsidy from a systemic
perspective.

5.1 In the baseline framework

Systemic risk is studied by running a Monte Carlo simulation of the following procedure:
(i) in t = 1 a liquidity shock enters the system8 and spurs an interbank lending network

following the modeling presented in section 4,
(ii) in t = 2− ε shocks to asset returns are realized, leading some banks to go bankrupt
(iii) in t = 2 bankruptcies impact the capital of the remaining banks through interbank loans

and asset price contagion, possibly leading to new failures. This last step is ran recursively until
no bank fails.

This procedure yields a vector of failed banks through which systemic risk may be studied.
In particular the following four statistics may be computed:

- "odds of complete collapse" gives the likelihood that all banks in the system are bankrupt
at the end of the contagion process. This metric is viewed as the main indicator of systemic risk.

- "odds of immediate failure" represents the likelihood for a given bank to be bankrupt
because of asset shocks, before the contagion process begins.

- "odds of contagion to the close neighbors" represents the likelihood that a bank is bankrupt
at the end of the contagion process, conditional on one of its close neighbors being bankrupt
before it starts.

- "odds of contagion to the distant neighbors" represents the likelihood that a bank is
bankrupt at the end of the contagion process, conditional on one of its distant neighbors be-
ing bankrupt before it starts.

Table 1 gives some of the values obtained after 100 000 iterations. Again our model is
compared to one in which fire sales are not accounted for by lenders, meaning that the common
interest subsidy vanishes:

subsidy no subsidy relative value
Odds of complete collapse 2.11 2.68 −21.27%

Odds of immediate failure 4.96 5.13 −3.31%

Odds of contagion to close neighbor 57.91 55.64 +4.08%

Odds of contagion to distant neighbor 28.61 28.47 +0.49%

Table 1: Systemic implication of common interest subsidy
This table reports the values of four systemic risk statistics with and without common interest subsidy.

8For conciseness we only consider one value for the distribution of εD here: σ2
d = 1
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The first line shows that the likelihood of a generalized failure is 2.11% in the subsidy set-up,
versus 2.68% in the no subsidy set-up. This means that the common interest subsidy lowers the
risk of a generalized failure by 21.27%.

This stabilizing effect is captured by the "odds of immediate failure" statistic. Indeed, in-
dividual failure before contagion is 3,31% less likely in the subsidy set-up compared to the no
subsidy one, which is logical since borrowers are less risky when obtain more favourable lending
conditions.

The other two statistics show that contagion is indeed higher in the subsidy network, as
expected from clustering. In particular, the likelihood that a bank fails if its close neighbour
failed is 4.08% higher compared to the no subsidy network. However the odds of contagion from
the distant neighbour are nearly similar in both frameworks. This comes from the fact that
generalized failure is more likely in the no subsidy set-up, which increases measured contagion.

Overall, the key result from this simulation is that the contagion effect is dominated by
the individual risk reduction effect, leading the common interest subsidy to be desirable from a
systemic risk perspective.

5.2 Alternative frameworks

This section runs the systemic analysis in two alternative frameworks in terms of asset holdings
and liquidity shocks.

5.2.1 A systemically important bank in the asset holding network

The baseline case used a symmetric asset holding network: all assets were held by three banks,
and all banks had similar structures. In this extension we remove symmetry, allowing one asset
to be held by all banks ("asset 4"), and one bank to hold only this common asset ("Bank C").
The resulting network is represented in figure 9.
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Figure 9: Asymmetric network
This figure represents the assets held for every bank. Banks are indicated with letters and assets are

numbered. For instance bank A owns assets 1, 2 and 4. Each bank holds asset 4 and two other assets, bank C
only holds asset 4.

The interesting feature of this set-up is that bank C will have particular importance in the
network, because its failure would trigger massive sales of an asset that has more potential for
contagion. In other words, bank C is systemically important. The goal is to study whether the
common interest subsidy is more desirable in this context.

Following the same method as in section 5.1, we run a Monte-Carlo simulation from which
several systemic risk statistics are drawn. Table 2 presents the results.

subsidy no subsidy relative value
Odds of complete collapse 2.32 3.06 −24.18%

Odds of immediate failure 0.53 0.77 −31.17%

Odds of contagion to close neighbor 84.44 84.60 −0.19%

Odds of contagion to distant neighbor 68.98 70.16 −1.68%

Table 2: Systemic implication of common interest subsidy for an asymmetric network
This table reports the values of four systemic risk statistics with and without common interest subsidy.

The statistics are computed for the asymmetric network, in this framework one of the banks is more systemic and
the network is more clustered.

The absolute values of this table are not directly comparable to those of table 1, because
banks are less diversified on average and thus the system is riskier. The most interesting statistic
is the comparison of the subsidy and no subsidy cases, in the last column.

It appears that the common interest subsidy is more helpful in reducing systemic risk when a
systemically important bank appears. The likelihood that the entire system collapses is 24.18%
lower allowing for a common interest subsidy, to be compared with 21.27% in the previous section.
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The reason for this added impact that a failure of the SIFI leaves the banking network with
little chance of survival. Therefore a key objective from a systemic risk perspective is to keep
bank C healthy. The common interest subsidy helps in this endeavour because it allows bank
C to obtain an interest rate that is much lower than it would if banks did not account for
its particular status. For instance, when εD = 1, the SIFI gets an interest rate of 1.24% in the
subsidy network, versus 0.72% in the no subsidy one. This effect shows in the "odds of immediate
failure" statistics, which indicates that the risk of non-contagion-triggered failure falls by 31.7%
when the subsidy appears.

To end this section we note that in this SIFI network both contagion statistics are lower in
the subsidy set-up. This is surprising at first sight since the interbank lending is more clustered
in that case. However this simply reflects the fact that generalized failure is more likely in the
no subsidy framework, which again increases measured contagion.

5.2.2 Different liquidity shock

So far the liquidity shock has also been considered symmetric: a negative shock for half of the
banks was matched by a positive shock of equal magnitude for the other half. This subsection
changes this modeling by allowing liquidity shocks to be positive on aggregate.

More precisely, the liquidity shock is still the same in absolute value for all banks, but we
allow for the possibility that more than half of the banks be potential lenders. This means that 5
to 10 banks may have experienced a positive liquidity shock. The probabilities attached to each
number between 5 and 10 is drawn from a truncated gaussian with a mean of 5 and a standard
deviation of 2.5.

We then run the Monte Carlo simulations using the same steps as in section 5.1. Table 3
summarizes the results:

subsidy no subsidy relative value
Odds of complete collapse 1.28 1.46 −12.33%

Odds of immediate failure 4.70 4.75 −1.05%

Odds of contagion to close neighbor 57.45 55.55 +3.42%

Odds of contagion to distant neighbor 26.46 26.41 +0.19%

Table 3: Systemic implication of common interest subsidy for an asymmetric liquidity
shock

This table reports the values of four systemic risk statistics with and without common interest subsidy.
The liquidity shock is here asymmetric, allowing the possibility that more than half of the banks be potential
lenders, and the system as a whole to have a liquidity surplus in period t = 2.

The impact of the subsidy remains qualitatively similar, but decreases in magnitude. The
probability of a generalized failure falls by 12.33% when accounting for the subsidy, versus 21.27%
in the baseline scenario. This finding is not surprising, since lending needs and borrower risk are
both lower with positive liquidity shocks t = 1, which implies that the common interest subsidy
should have a lesser role.

Nevertheless it is interesting to note that for the banks who do experience a negative liq-
uidity shocks, the common interest subsidy kicks in more often in this set-up. Indeed, because
more banks have positive liquidity shock, the likelihood that a close neighbour has cash to lend
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increases. This enhances the impact of the subsidy on cross-sectional lending. Put simply, the
subsidy is at play for a larger proportion of a lesser number of loans.

6 Conclusion

In a banking model where fire sales may spread shocks throughout the banking system, similar
banks are tempted to lend to each other at favorable conditions compared to what borrower risk
suggests. This explains why rates and volumes on the interbank lending market have showed
strong resilience during the 2008 crisis, and why the lending network became more clustered at
that time. This common interest subsidy appears desirable for the perspective of systemic risk.

The simple findings derived from our model have interesting implications. For instance, if
banks of similar profiles exhibit solidarity during crises, international risk diversification becomes
less desirable from the perspective of a social planner as it lowers the amount of asset commonality
between banks of similar countries. Such unintended effects do not call into questions the fact
that asset diversification has a positive impact on financial stability, but the regulator should
keep them in mind when assessing the scope of the next banking crisis.

21



References

Acharya, V. V., Gromb, D., and Yorulmazer, T. (2012). Imperfect competition in the inter-
bank market for liquidity as a rationale for central banking. American Economic Journal:
Macroeconomics, 4(2):184–217.

Affinito, M. (2012). Do interbank customer relationships exist? and how did they function in
the crisis? learning from italy. Journal of Banking & Finance, 36(12):3163–3184.

Afonso, G., Kovner, A., and Schoar, A. (2011). Stressed, not frozen: The federal funds market
in the financial crisis. The Journal of Finance, 66(4):1109–1139.

Anand, K., Gai, P., and Marsili, M. (2012). Rollover risk, network structure and systemic
financial crises. Journal of Economic Dynamics and Control, 36(8):1088–1100.

Angelini, P., Nobili, A., and Picillo, C. (2011). The interbank market after august 2007: what
has changed, and why? Journal of Money, Credit and Banking, 43(5):923–958.

Boissel, C., Derrien, F., Ors, E., and Thesmar, D. (2017). Systemic risk in clearing houses:
Evidence from the european repo market. Journal of Financial Economics, 125(3):511–536.

Bräuning, F. and Fecht, F. (2016). Relationship lending in the interbank market and the price
of liquidity. Review of Finance, 21(1):33–75.

Caballero, R. J. and Simsek, A. (2013). Fire sales in a model of complexity. The Journal of
Finance, 68(6):2549–2587.

Cifuentes, R., Ferrucci, G., and Shin, H. S. (2005). Liquidity risk and contagion. Journal of the
European Economic Association, 3(2-3):556–566.

Cocco, J. F., Gomes, F. J., and Martins, N. C. (2009). Lending relationships in the interbank
market. Journal of Financial Intermediation, 18(1):24–48.

Copeland, A., Martin, A., and Walker, M. (2014). Repo runs: Evidence from the tri-party repo
market. The Journal of Finance, 69(6):2343–2380.

Coval, J. and Stafford, E. (2007). Asset fire sales (and purchases) in equity markets. Journal of
Financial Economics, 86(2):479–512.

Craig, B. R., Fecht, F., and Tümer-Alkan, G. (2015). The role of interbank relationships and
liquidity needs. Journal of Banking & Finance, 53:99–111.

Eisenberg, L. and Noe, T. H. (2001). Systemic risk in financial systems. Management Science,
47(2):236–249.

Gabrieli, S. and Georg, C.-P. (2014). A network view on interbank market freezes. Bundesbank
Discussion Paper.

Gai, P. and Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 466(2120):2401–2423.

22



Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable banks. Journal of Financial
Economics, 115(3):471–485.

Kobayashi, T. and Takaguchi, T. (2018). Social dynamics of financial networks. EPJ Data
Science, 7(1):15.

Krishnamurthy, A., Nagel, S., and Orlov, D. (2014). Sizing up repo. The Journal of Finance,
69(6):2381–2417.

Leitner, Y. (2005). Financial networks: Contagion, commitment, and private sector bailouts.
The Journal of Finance, 60(6):2925–2953.

Mancini, L., Ranaldo, A., and Wrampelmeyer, J. (2015). The euro interbank repo market. The
Review of Financial Studies, 29(7):1747–1779.

Pérignon, C., Thesmar, D., and Vuillemey, G. (2018). Wholesale funding dry-ups. The Journal
of Finance, 73(2):575–617.

Raffestin, L. (2014). Diversification and systemic risk. Journal of Banking & Finance, 46:85–106.

Rogers, L. C. and Veraart, L. A. (2013). Failure and rescue in an interbank network. Management
Science, 59(4):882–898.

Temizsoy, A., Iori, G., and Montes-Rojas, G. (2015). The role of bank relationships in the
interbank market. Journal of Economic Dynamics and Control, 59:118–141.

23



Appendix A

This appendix studies the balance sheets of both banks in t = 1, following the occurrence of the
liquidity shock εD. Two cases need to be considered separately:

(i) bank B accepts the interest rate offered by bank L, and a loan occurs.
(ii) bank B refuses the rate offered by bank L, and sells assets.

The "loan" case

In the event of a loan, a debt (claim) of BB = εD appears in the books of bank B (bank L). The
balance sheet for bank B in t = 1 is then given by :

bank B:

assets liabilities

pb,0qb,0 DB
1 = DB

0 − εD

pc,0q
B
c,0 KB

1 = KB
0

BB = εD

While the balance sheet for bank L writes:

bank L:

assets liabilities

pl,0ql,0 DL
1 = DL

0 + εD

pc,0q
L
c,0 KL

1 = KL
0

BB = εD

The "no-loan" case

If there has been no agreement on a loan in t = 1, bank B sells a quantity 4qb,1 of asset b at a
price pb,1 = pb,0−λ4qb,1, and a quantity 4qc,1 of asset c at a price pc,1 = pc,0−λ4qc,1, in order
to obtain a sum of εD. Mathematically this translates into the following condition:

4qb,1(pb,0 − λ4qb,1) +4qc,1(pc,0 − λ4qc,1) = εD. (13)

The total value of assets in t = 1 is then given by:
(qb,0 −4qb,1)(pb,0 − λ4qb,1) + (qBc,0 −4qc,1)(pc,1 − λ4qc,1) = KB

1 +DB
1

Using (13), this can be re-expressed as:
KB

1 +DB
1 = qb,0(pb,0 − λ4qb,1) + qBc,0(pc,0 − λ4qc,1)− εD

KB
1 +DB

1 = pb,0qb,0 + pc,0q
B
c,0 − λqb,04qb,1 − λqBc,04qc,1 − εD

Using the t = 0 balance sheet equilibrium.
KB

1 +DB
1 = K0 +D0 − εD-λqb,04qb,1 − λqBc,04qc,1

Denoting by ΠB,1 = KB
1 −KI

0 the profit of bank B between t = 0 and t = 1, this expression
can be rearranged as:

ΠB,1 = −(λqb,04qb,1 + λqBc,04qc,1)
which allows us to draw the balance sheet for bank B in t = 1 when no loan occurred:
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assets liabilities

(qb,0 −4qb,1)(pb,0 − λ4qb,1) DB
1 = DB

0 − εD

+(qBc,0 −4qc,1)(pc,0 − λ4qc,1) KB
1 = KB

0

−λqb,04qb,1 − λqBc,04qc,1

To obtain the asset sales for each asset 4qb,1 and 4qc,1, we assume that bank B keeps
the same proportion of assets b and c as in t = 0, since the characteristics of both assets are
unchanged. Formally:

qBc,0

qBc,0 + qb,0
=

qBc,1

qBc,1 + qb,1
= w (14)

which, along with equation (13) allows us to uniquely define 4qb,1 and 4qc,1.
Turning to bank L, two new elements appear in the balance sheet in t = 1. The first element

is a surplus of liquidity of εD, since the bank received a positive liquidity shock. We simply set
that this excess liquidity goes into a liquid short-term market at one period horizon that yields
no interests L1 = εD. The second element is a fall in asset values due to the fact that the price
of asset c has fallen as a result of the sales from bank B. The balance sheet in t = 1, for bank L
in the no loan case, is then given by :

bank L:

assets liabilities

pl,0ql,0 DL
1 = DL

0 + εD

qLc,0(pc,0 − λ4qBc,1) KL
2 = KL

0 − λqLc,04qBc,1
L1 = εD

Appendix B

The loan case

Bank B
In t = 2, the asset shocks εpb and εpc materialize, and the loan must be repaid with interests.

Because there has not been any sales in t = 1 we have pi,0 = pi,1. Capital adjusts to maintain
the equality between assets and liabilities, which yields:

bank B:

assets liabilities

qb,0(pb,0 + εpb) DB
2 = DB

0 − εD

qBc,0(pc,0 + εpc) KB
2 = KB

0 − rεD + qb,0ε
p
b + qBc,0ε

p
c

BB,2 = εD(1 + r)

Bank L, given survival of bank B
The same logic applies, except that the loan now appears on the asset side since bank L is

the lender:

bank L:

assets liabilities

ql,0(pl,0 + εpl ) DL
2 = DL

0 + εD

qLc,0(pc,0 + εpc) KL
2 = KL

0 + rεD + qLc,0ε
p
c + ql,0ε

p
l

BB,2 = εD(1 + r)
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Bank L, given failure of bank B
If bank B has gone bankrupt, the loan is defaulted on, which implies a net loss of εD for the

lender. A share δ of assets is also liquidated by bank B to manage its bankruptcy, which lowers
the market value of asset c. The balance sheet of bank L writes:

bank L:

assets liabilities

qLc,0(pc,0 − λδqBc,0 + εpc) DL
1 = DL

0 + εD

ql,0(pl,0 + εpl ) KL
2 = KL

0 + ql,0ε
p
l + qLc,0ε

p
c

−εD + qLc,0(−λδqBc,0)

The no-loan case

When there has not been a loan in t = 1, the only change in t = 2 comes from the asset shocks.
One simply needs to add these shocks to the balance sheets provided in appendix A.

Bank B

bank B:

assets liabilities

(qb,0 −4qb,1)(pb,0 − λ4qb,1 + εpb) DB
1 = DB

0 − εD

(qBc,0 −4qBc,1)(pc,0 − λ4qBc,1 + εpc) KB
2 = KB

0 +

−λqb,04qb,1 − λqBc,04qBc,1
+(qb,0 −4qb,1)εpb+(qBc,0 −4qBc,1)εpc

For bank L, when bank B survives
The same logic applies: only asset shocks need to be added to the t = 1 situation.

bank L:

assets liabilities

ql,0(pl,0 + εpl ) DB
1 = DB

0 + εD

qLc,0(pc,0 − λ4qBc + εpc) KB
2 = KB

0 − λqLc,04qBc,1
L1 = εD +ql,0ε

p
l + qLc,0ε

p
c

For bank L, when bank B fails
In this case bank B sells some of its remaining asset of the common asset until it reaches

the maximum proportion of asset that can be sold, δ. Mathematically: 4qBc,2 +4qBc,1 = δqc,0.
Because the impact of sales is linear both rounds of selling ( in t = 1 and t = 2) can be considered
together.

bank L:

assets liabilities

ql,0(pl,0 + εpl ) DB
1 = DB

0 + εD

qLc,0(pc,0 − λδqBc,0 + εpc) KB
2 = KB

0 − λδqLc,0qBc,0
L1 = εD +ql,0ε

p
l +q

L
c,0ε

p
c

Appendix C

This appendix describes the steps involved in solving the analytically tractable version of the
model in section 3.2.
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Conditions for a tractable solution

A closed-form solution requires making specific assumptions regarding the distributions for the
asset shocks. In particular, this appendix sets that:

(i) the shocks on the privately held assets εpb and εpl are both uniformly distributed over
[µ− V, µ+ V ], where V is small enough that P (dL|d̄B) = 0. This means that the liquidity rich
bank may not default if the liquidity poor bank has survived and paid back its loan. Formally
this translates into the following condition: VpL <

rεD+KL
0 +qlµpL

2ql,0
.

(ii) The liquidity shock εp is also uniformly distributed over the interval [0, C], where C may
not exceed a threshold value C ′ defined by C ′ = qi(mu+V )+2F

3 . This upper bound states that
the best possible return on assets is sufficient to offset the worst possible withdrawal of funds in
t = 1.

(iii) the shock on the commonly held asset εpc is set to zero. This rules out shocks on the
common asset c allows both banks to be independent in terms of asset returns, which simplifies
the analysis while keeping the intuition intact.

Expected profits and probabilities of failure

In order to find r∗ one must draw the probabilities of failure/survival and expected from the
profit functions given in section 2.3.2.

Let us for instance consider equation (4) which gives the expression for ΠB, the profit for
bank B in the loan case. Because there is no shock on the common asset in the context of this
appendix, ΠB simplifies to:

ΠB = −rεD + qiε
p
b

Since εpb is uniformly distributed over the interval [µ− V, µ+ V ], the likelihood that bank B
survives P (d̄B) is thus :

P (d̄B) = P (ΠB > −K) =
qiµ+ qiV − rεD +K

2qiV
(15)

Let us now consider the profit of bank L when bank B defaulted on its loan, which writes:

ΠL,F = qiε
p
l − ε

D − λδ(qc)2

This yields the following expression for the probability that bank L survives while B defaults:

P (d̄L, dB) =
qiµ+ qiV − εD − λδ(qc)2 +K

2qiV
(16)

while the expression for the expected utility of bank L knowing that it has survived while
bank B failed, denoted by E(UL|d̄L, dB), is:

E(UL|d̄L, dB) =
1

2
[qi(µ+ V )− εD − λδ(qc)2 −K] (17)
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Finally let us consider the profit for bank L when bank B survives :

ΠL,S = rεD + ql,0ε
p
l

In this case the probablity of survival for bank L is, by definition:

P (d̄L, d̄B) = 1 (18)

which implies that the expected utility of bank L in this case is:

E(UL|d̄L, d̄B) = qiµ+ rεD (19)

Solving

Solving first involves plugging expressions (15) to (19) into (10), and maximizing the resulting
expression. (10) may be rewritten as:

E(UL) = [1− P (d̄L|dB)] ∗ [1− P (d̄B)] ∗ (−F︸ ︷︷ ︸)
A

+P (d̄L|dB) ∗ [1− P (d̄B)] ∗ E(UL|d̄L, dB)︸ ︷︷ ︸
B

+P (d̄B) ∗ E(UL|d̄B , d̄L)︸ ︷︷ ︸
C

(20)

Plugging expressions (15) and (16) in A yields:

A = (−F )(
1

2qiV
)2 ∗ rεD ∗ (qiV − qiµ−K + b(qc)

2 + εD) + cst

where cst gathers all the terms that are unrelated to r. Taking the derivative of A with
respect to r, and rearranging gives :

∂A

∂r
= −F (

1

2qiV
)2 ∗ εD ∗ 2qiV + F (

1

2qiV
)2 ∗ εD ∗ (qiV + qiµ+K − b(qc)2 − εD)]

Plugging expressions (15), (16) and (17) in B yields:

B =
1

2
(

1

2qiV
)2 ∗ (qiµ+ qiV − λδ(qc)2 − εD −K) ∗ (qiµ+ qiV − λδ(qc)2 − εD +K) ∗ rεD + cst

Taking the derivative and re-arranging :

∂B

∂r
=

1

2
(

1

2qiV
)2 ∗ (qiµ+ qiV − λδ(qc)2 − εD −K) ∗ (qiµ+ qiV − λδ(qc)2 − εD +K) ∗ εD

Plugging expressions (15) and (19) in C yields:

C = (
1

2q1V
) ∗ [(qiµ+ qiV +K − qiµ) ∗ rεD − (rεD)2] + cst

Taking the derivative and re-arranging :
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∂C

∂r
= (

1

2qiV
)εD ∗ [qiV +K − 2rεD]

Using the fact that ∂E(UL)
∂r = ∂A

∂r + ∂B
∂r + ∂C

∂r , and re-arranging, we obtain the final result:

r∗ =
1

2 ∗ εD

(
qiV +K − F + (

1

2qiV
) ∗ [qiµ+ qiV +K − λδ(qc)2 − εD] ∗ [F +

1

2
(qiµ+ qiV − λδ(qc)2 − εD −K)]

)
(21)

This form shows that the rate that lenders are willing to offer depends in non monotonic
fashion on all variables, particularly the amount of common exposure qc.

Expression (21) can be re-expressed as a polynomial of the second degree of qc, whose behavior
can easily be studied. This study, available on request, shows that over an interval [0, T ] where
T > 0, the rate that a lending bank is willing to offer to a borrowing banks falls with the degree
of commonality between the two banks, which is evidence that the common asset subsidy is
present in this tractable version of the model.

Appendix D

We study how the equilibrium interest rate changes with the characteristics of the financial
markets. In particular, we examine the impact of a change in the value of the following four
parameters:

- the share of assets liquidated following bankruptcy δ. - the impact of sales on prices λ. -
the disutility of bankruptcy F . - the size of the liquidity shock εD.

For each parameter we consider two values, on the low and high side of the default value.
Figure 10 plots the results:
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Figure 10: Equilibrium interest rate for different values of εD, λ, F and δ.
This figure represents the behaviour of the three interest rates r∗, r̄ and r for low and high values of the share

of assets liquidated following bankruptcy δ, the impact of sales on prices λ, the disutility of bankruptcy F and
the size of the liquidity shock εD. This figure plots the interest rate that bank L would like to charge r∗ (dashed
line), the maximum rate that bank B is willing to accept r̄ (full line) and the equilibrium interest rate r (line
with circle markers) for different level of commonality ω.

The first comment is that the behavior of both r∗ and r̄ are very consistent across subplots.
In particular, the interest rate that maximizes the utility of the lender initially falls with the
level of asset commonality, before stabilizing. Different parameters values may lead the initial
drop to be more or less pronounced, but do not change the overall pattern. What changes is the
point of appearance of the common interest subsidy, i.e. the level of commonality ω such that
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r∗ = r̄.
The parameter that appears to have the strongest effect is λ, the price impact of fire sales.

When λ drops to 0.05, the equilibrium interest rate is always the maximum rate that the borrower
is willing to pay, r = r̄. In other words, it is never in the interest of the lender to subsidize the
borrower when εD = 1. However, if λ = 0.15, r∗ and r = r̄ are very close even for low levels of
commonality, and the subsidy permanently sets in as soon as ω = 0.45. This strong sensibility
is not surprising: when the lender has more to fear from fire sales, his incentive to avoid them
grows stronger.

F and εD appear to have a qualitatively similar yet more moderate impact. When the cost
of failure increases, the lender is more willing to accept the opportunity cost of lower rates in
exchange for lower bankruptcy risk. When the liquidity needs of the borrower rise, the amount
of sales required to face those needs also increases, which makes fire sales more costly, and gives
the lender more reasons to subsidize. Note that the impact of εD on fire sales is non-linear:
because the sales lower the price of the asset, the amount of sales required to obtain the first
unit of liquidity is lower than that required to obtain the second unit.

The last parameter is δ, which represents the proportion of asset that gets liquidated following
bankruptcy. Qualitatively, its effect is in line with expectations: when a failure involves more
fire sales, the cost it imposes on banks with similar asset structure rises, which increases the
incentive to subsidize. However it is interesting to note that this impact is very modest. The
reason for this is that an immediate sale of 20% already has a strong negative impact on the
expected profit of the lender, implying that there is little room for worsening.
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