Conference paper Open Access

Rescheduling and co-simulation of a multi-period multi-model assembly line with material availability restrictions

Gregory A. Kasapidis; Yiannis Mourtos; Panagiotis P. Repoussis; Sven Spieckermann; Christos D. Tarantilis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Production planning and scheduling,  and Simulation Tools</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Optimisation Methods and Simulation Tools</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Optimization and Control</subfield>
  </datafield>
  <controlfield tag="005">20200120145241.0</controlfield>
  <controlfield tag="001">3522108</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">28-30 August 2019</subfield>
    <subfield code="g">MIM 2019</subfield>
    <subfield code="p">2</subfield>
    <subfield code="a">9th IFAC Conference on Manufacturing Modelling, Management and Control</subfield>
    <subfield code="c">Berlin, Germany</subfield>
    <subfield code="n">FrDT5</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Athens University of Economics and Business</subfield>
    <subfield code="a">Yiannis Mourtos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Athens University of Economics and Business</subfield>
    <subfield code="a">Panagiotis P. Repoussis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">SimPlan AG</subfield>
    <subfield code="a">Sven Spieckermann</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Athens University of Economics and Business</subfield>
    <subfield code="a">Christos D. Tarantilis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">105700</subfield>
    <subfield code="z">md5:1c8baf2135ca408b79de408c9762bc9c</subfield>
    <subfield code="u">https://zenodo.org/record/3522108/files/abstract.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://blog.hwr-berlin.de/mim2019/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-08-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3522108</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Athens University of Economics and Business</subfield>
    <subfield code="a">Gregory A. Kasapidis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Rescheduling and co-simulation of a multi-period multi-model assembly line with material availability restrictions</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">723541</subfield>
    <subfield code="a">Decentralised architectures for optimised operations via virtualised processes and manufacturing ecosystem collaboration</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This work focuses on real-time production planning and scheduling problems that are encountered in modern manufacturing environments. More specifically, a simulation assisted optimization scheme is proposed that seeks to handle dynamic disruption events via robust production re-scheduling. The proposed scheme is tested using data from a real automotive manufacturing plant over a planning period of four months. The examined scheduling problem is formulated as a multi-period multi-model paced assembly line scheduling problem with component availability restrictions. On a daily basis the material replenishment and truck arrival plan at the plant is known; however, delays may occur. Additionally, quality problems may occur at the paint shop and this may affect the availability of specific car bodies. These component availability events may significantly disrupt the current schedule and the cost to fix them can be significant. An advanced meta-heuristic algorithm is proposed for solving the re-scheduling problem. We adopt a hierarchical objective function that seeks to minimize the re-scheduling cost and also to maximize the robustness of the schedule. For this purpose, simulation is used to evaluate the generated schedules and to identify critical components that are prone to delays. On return, this list of components is used by the optimization to measure the robustness of the schedules and to introduce time-buffers. Overall, results demonstrate the applicability, effectiveness and efficiency of the proposed framework in a real manufacturing environment.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3522107</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3522108</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
60
40
views
downloads
All versions This version
Views 6060
Downloads 4040
Data volume 4.2 MB4.2 MB
Unique views 5757
Unique downloads 3838

Share

Cite as