
A self-learning solution for effective service

modelling and portfolio management

Rasha Daoud
rasha.daoud@gmail.com

September 4, 2019, 67 pages

Research supervisor: dr. Z. (Zhiming) Zhao, z.zhao@uva.nl

Host supervisor: F. ter Beek, felix.terbeek@stachanov.com

Host organisation: Stachanov Solutions and Services, https://www.stachanov.com/

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:rasha.daoud@gmail.com
mailto:z.zhao@uva.nl
mailto:felix.terbeek@stachanov.com
https://www.stachanov.com/
http://www.software-engineering-amsterdam.nl

Abstract

Software companies aim to continuously improve the efficiency of delivering solutions to customers and
reduce their software maintenance cost and maintain sustainability as Software evolves. Service Oriented
Architecture (SOA) cuts on development costs and efforts by allowing developers to model their software
assets with standardized interfaces and to reuse them in new solutions as building blocks. A Service
Portfolio documents the service assets and their evolution managed by the company, including services
in the pipeline, retired services, and 3rd-party services which are an integral part of the service offerings
to customers. It provides a common information source for developers, sales, customer support and other
roles in the company.

The functionality and the granularity of the entities in the portfolio have a direct impact on the
reusability and sustainability of those assets. When developing various SOA solutions and with the
continuous development and delivery in Agile, design decisions must be always taken to slice and realize
the required scope of functionality into services and components. Modelling existing assets as services
with well-defined granularity can not only significantly leverage them in the design loop, and optimize
the development costs, but also improve the maintenance efficiency of the service portfolio by minimizing
the number of less reusable inventories and variations.

Existing methods focus on identifying and creating services in the design loop, but don’t consider in-
tegrating proper granularity and development cost indicators from the portfolio in the modelling decision
pipeline and the evolution of the portfolio. We thus proposed a decision support approach that uses a
collaborative modelling technique for both legacy/ existing assets and new required business functional-
ities and uses variation analysis activities in the design loop to discover assets for reuse. Combining this
approach with the continuous development and delivery makes it work as a self-learning design support
system that continuously aligns available software assets with business needs and helps companies evolve
their service portfolio in the right direction for the market.

1

Contents

1 Introduction 4
1.1 Background . 4

1.1.1 Service Oriented Architecture (SOA) . 4
1.1.2 Service lifecycle and portfolio management . 5

1.2 Motivating problem and an example business case . 6
1.3 Research project details . 8
1.4 Outline . 10

2 State of the art and related work 11
2.1 Systematic literature review and analysis . 11

2.1.1 Service granularity and service identification and modelling 11
2.1.2 Modelling techniques . 13
2.1.3 Service granularity and costs . 14
2.1.4 Cost estimation methods . 14
2.1.5 Risk mitigation . 15
2.1.6 Assets sustainability and Evolutionary Architecture 15
2.1.7 Service Portfolio Management . 16

2.2 Literature gaps analysis . 17

3 Granularity decisions based on software development and portfolio evolution 18
3.1 A general idea . 19
3.2 Detailed explanation of cycles . 19

3.2.1 Software development cycle in Agile development 19
3.2.2 Portfolio management . 20
3.2.3 Knowledge management . 21

3.3 Interactions between lifecycles through the knowledge-base 22

4 Approach implementation 23
4.1 Related definitions . 23

4.1.1 Business functions classification . 23
4.1.2 Modelling technique . 24

4.2 Approach implementation . 24
4.2.1 From requirements and existing systems to modelled services 25
4.2.2 Granularity and cost estimation metrics . 28
4.2.3 Service portfolio decision model . 32
4.2.4 The continuous learning . 33

4.3 The rationale behind proposed implementation . 34
4.4 Long term KPIs and impact of granularity decisions on business 35

5 Case study 38
5.1 Preliminary research at the host organization . 38

5.1.1 Interviews and group discussions . 38
5.1.2 Results . 39

5.2 Applying the approach . 40
5.2.1 Business goals . 41
5.2.2 Service identification and modelling decision making 41

5.3 Repeating the application . 47

2

CONTENTS

6 Discussion 49
6.1 Novelty of the approach . 49
6.2 Answering supporting research questions . 50
6.3 Answering the main research question . 51
6.4 Conway’s law . 52
6.5 Promoting long-term decisions and collaboration . 52
6.6 Software Architectural Erosion . 53
6.7 Perfectionism pitfalls . 53
6.8 Threads to validity . 53

7 Support in different context 54
7.1 Evolutionary Architecture . 54
7.2 Hypothesis-Driven Development . 54
7.3 Complementing Lean in Agile development . 55

8 Conclusions and future work 56
8.1 Conclusions . 56
8.2 Future work . 56

Acronyms 61

Appendix A Stachanov background and studied case 62
A.1 Business process management and business tasks . 62
A.2 Stachanov studied case . 63

A.2.1 Used technology . 64

Appendix B Application result in Stachanov case 65
B.1 Data model for demonstrated case . 65
B.2 Candidate services for targeted market . 65
B.3 Observations from reverse engineering and variation analysis 65

3

Chapter 1

Introduction

In this chapter, we briefly present background information for this thesis. We describe the research moti-
vation, the problem we propose to solve, and how this problem manifests itself at the host organization.
Then, we present our research structure and introduce our proposed solution and our contribution to
the targeted research area. Finally, we present the outlines of the following chapters.

1.1 Background

1.1.1 Service Oriented Architecture (SOA)

SOA is an architectural design style which enhances the component-driven architecture approach. It
allows separate services, namely, software units that are created using different technologies and hosted
on different servers to be used to assemble a software solution. The service which forms the basic building
block in SOA applications is usually self-contained and encapsulates certain context to perform a task.
It is provided to other application components and different applications through certain communication
protocols and may consist of other underlying services (See Fig 1.1). This means a service in SOA can
be atomic or combines other services by itself. Having services distributed, loose-coupled, and platform-
independent in SOA gives means to standardize the service integration, automate the deployment, and
enhance reusability and scalability of software assets and both software and business agility. It also helps
to extend applications life span and facilitates replacing or upgrading the building blocks [29, 32].

Figure 1.1: Simplified overview: services in SOA application

SOA has many service design principles to unlock its benefits, including flexibility in introducing
requirements and technology changes and reuse of existing services to cut development costs. To reduce
development costs for new SOA applications, the reusability of existing service assets through service
composability is key. The relation between SOA design principles and service reusability as one enabler
for SOA benefits is shown in Fig 1.2. Besides that, standardization of the service description, so-called
service contract across the whole service catalog is important to support services reuse and ease the
discoverability and composability.

4

CHAPTER 1. INTRODUCTION

Figure 1.2: The relation between SOA principles and service reusability

Service granularity and SOA modelling Service granularity refers to the scope of functionality
or the size of the functionalities one service contains. In other words, it is the quantified encapsulated
functionality in one service [13]. Choosing granularity of services is a critical task when identifying
services in new SOA solutions, as services should have a certain scope of functionality to be loosely-
coupled and reused to realize various business functionalities and processes as well as easier to change
when requirements or technology change. On the other side, modelling software assets in SOA plays an
important role in defining services and choosing proper granularity. To cut on development efforts when
slicing new set of functionalities in the design loop, existing assets should have a standardized interface
and should be modelled using a suitable modelling technique to enable development teams leveraging
assets to interpret them correctly and reusing them. This also helps to reduce future maintenance costs
and minimize the number of less reusable services and overlapping services in service inventories, which
is crucial for business.

Existing modelling methods propose different types of modelling languages and ontology to model
SOA artifacts, including identified services in SOA solutions and their relationships. However, those
methods such as SOMA [3] which model SOA solutions don’t consider modelling legacy systems as
services and modelling available service assets in inventories in a collaborative modelling technique as
requirements and assembled solutions to include them in their existing assets analysis and speed up
leveraging and interpreting them in design loops. Without having such a modelling method, development
teams that deliver solutions iteratively or work on different products may introduce improper granularity
decisions that don’t consider the evolution of assets and miss the chance of reusing services assets and
maintain their SOA solutions to stay reliable and resilient to change and evolve every iteration.

1.1.2 Service lifecycle and portfolio management

SOA Governance: While maintaining a suitable set of services for customers at a desirable cost is
key in companies, SOA governance is an extension of IT governance that focuses on managing service
lifecycle, usage, and registry [11]. To succeed in SOA, nothing in the software company should exist in
isolation. Leveraging existing assets and data by provisioning them as shareable services is important.
For instance, IT teams are expected to leverage services to quickly deliver solutions or introduce changes
to them. SOA governance empowers people to work in a collaborative manner efficiently by defining their
roles and responsibilities clearly and managing different processes that are related to service lifecycle.
Otherwise, there is a little chance to benefit from adopting SOA and for sustaining service assets and
inventories that align SOA services with business needs and the company’s strategies.

Service portfolio and service portfolio management: A service portfolio is a repository that
documents three important domains at the software company and offers an overview of their statuses.
Those domains are as follows:

∙ Service catalog: it includes the already exposed and available services and should provide a clear
overview of what assets are available and what purpose do they fulfill, through having standard
service descriptions and other information

∙ Service pipeline: it includes planned services, services under development for certain customer or

5

CHAPTER 1. INTRODUCTION

Figure 1.3: Service lifecycle

market, and potential services to be developed for future business. The pipeline offers the strategic
outlook of the company’s business services

∙ Retired services: those are the withdrawn services and no longer available to customers or to be
used to assemble solutions and consumed in the runtime. A service is often thrown out when it is
no longer beneficial or required

On the other hand, managing the provider’s service portfolio is a discipline whereby the service
provider creates, describes, and maintains the optimum set of services to offer to solve specific business
problems for customers, enhance the business agility, and maintain profitability. It is considered as one
part of SOA governance and an enabler to achieve business governing goals. It makes sure the provider
has the right balance between investments in their IT assets with the ability to meet business needs.
This includes tracking the investments and costs in services through the service lifecycle and make sure
the desired return on investment and customer satisfaction in term of requirements and SLAs, are met.

As part of the portfolio management, providers should also ensure that services are clearly defined
and modelled in the portfolio catalog, so they can be leveraged quickly by IT teams and business teams,
but also they can be linked to business outcomes and suitable KPIs, so they get reviewed based on
business needs, costs, and customer satisfaction. This enables providers to phase out services and plan
for new ones based on business needs and costs periodically and only keep and manage economically
viable services which are aligned with business needs and provider’s strategies [28].

1.2 Motivating problem and an example business case

While software companies aim to continuously improve the efficiency of deliveries and reduce mainte-
nance costs, managing the evolution of the service portfolio is critical for this task. With the continuous
development and incremental changes in Agile, there are always granularity decisions to be taken by
different development teams who only see scoped work in backlogs. Modelling assets and their usage in
past solutions to maximize reusing assets and align them with business needs is crucial to optimizing
development and maintenance cost as well as sustaining the portfolio. Having proper modelling tech-
nique doesn’t only allow Agile teams to interpret the capabilities of assets in design loops efficiently,
managing too many services that are used becomes costly and hard, which can also result into high
service interruption for customer on technology changes.

A typical example from the banking sector, in which the software company Stachanov developed
a platform as a set of supporting business and utility functions to help them rapidly develop web ap-
plications for loan underwriting and credit risk assessment processes and services (More details are in
Appendix A.1). The platform has an integrated workflow engine, monitoring functionalities, a standard
financial model, and other utility functions and can be included in a web solution for a certain bank as a
base to implement the business functionalities for such loan underwriting and risk assessment processes.
This speed up time-to-market a bit through offering basic functionalities in web applications.

As customer-base evolved, with more delivered applications and the iterative delivery of requirements

6

https://www.stachanov.com/

CHAPTER 1. INTRODUCTION

to different development teams, many generic and shared business-domain functionalities ended up re-
implemented in different applications or as part of custom business functionalities rather than separate
functionalities and services in the platform itself to be reused across various applications. Sometimes
those were also re-implemented in different components in one application due to automating similar
kind of business processes in one bank for different types of loans and applicants. This resulted over time
in lower productivity and higher maintenance cost as well as no significant reduction in development
efforts for new solutions. It also affected the ability for introducing changes to applications without
causing errors due to the tight coupling and improper modularity for business functions.

When applications evolve, not only maintenance cost can increase, even experienced team members
can find it difficult to understand the capabilities of existing assets when introducing changes and adding
more features due to the big responsibilities of existing functionalities and the lack of proper modelling
technique for assets.

Management and business analysts at Stachanov are highly experienced in target sector needs and are
aware of banking and risk assessment standards and have proper service management processes in place.
Their original objective was that the platform can evolve into a set of business services to be reused due
to the similarities in such business processes and targeted business domains, rather than expanding the
size of solutions. However, even with competent developers and knowledgeable management & business
staff, the company couldn’t keep track of the impact of short term design decisions on the sustainability of
their assets and expected development efforts on the evolution of assets, and couldn’t evolve their assets
to enhance reusability and changeability. They couldn’t also connect development teams and pipeline
with their service portfolio management processes to mitigate risks and take proper actions early.

The management is considering SOA adoption and developing a set of business building blocks that
can be constructed and deconstructed to assemble new solutions based on the variations in banking
policies, standards, and banks needs. However, they would like to adopt an effective service identification
and modelling approach, so they can reduce the risks of similar problems to occur in the future and align
their IT assets with business demands efficiently to optimize costs and meet their SLAs.

Due to the already big investment in the current platform and applications, critical decisions should
be taken to identify potential business services from those systems. Most important that such decisions
will recur in future development cycle. Taking proper design decisions and creating or expanding services
while customer requirements are incrementally processed and with daily design decisions being taken by
various developers is a major challenge. Therefore, we were very motivated by such a typical problem to
research and develop an effective service identification and modelling approach that can enhance service
identification and modelling strategies of Agile teams based on service portfolio evolution and link Agile
modelling activities with portfolio management activities using proper granularity and cost indicators to
receive feedback from each other and manage the evolution of the portfolio effectively.

Involved stakeholders: Since the service granularity and modelling problem is not only an architec-
tural problem, various business and technical stakeholders are involved in the solution at any software
company. Those stakeholders are presented in Fig 1.4.

Figure 1.4: Stakeholders and their roles

7

CHAPTER 1. INTRODUCTION

1.3 Research project details

Proposed granularity decision making and portfolio management approach: To help com-
panies solve the identified problem while motivating development teams to work independently and
efficiently, we developed a granularity decision making approach based on software development and
portfolio evolution, which integrates a collaborative modelling technique for assets and new required
business functionalities in SOA solution and analyze the variations between those to discover assets for
reuse in design loops.

When adopting the approach with Agile continuous development and delivery, the solution establishes
and continuously maintains an up-to-date knowledge-base for existing business services and assets as well
as already spent efforts to develop those services. This reliable knowledge-base makes the solution work
as a self-learning feedback tool to the granularity decision pipeline to take cost-effective granularity
decisions and enhance choices, as well as offers feedback the service portfolio management activities to
scope work and plan for publishing services. This feedback can be also used to monitor spent costs and
the impact of continuously taken granularity decisions on business in the long term. As a result those
monitoring activities in the portfolio management can also update the knowledge-base based on business
observations with suitable decision rules that can help Agile teams optimize their design decisions in the
future before it is costly to do so.

Research questions: In this project, we aim to answer the following main question:

How to effectively manage the evolution of the service portfolio in agile software devel-
opment?

To be able to answer our main question, the following supporting questions were drafted and answered
during our research work:

i How to speed up leveraging existing assets and enhance the knowledge sharing across teams?

ii How to continuously update the service identification and modelling strategies during the software
lifecycle using the feedback from the portfolio evolution?

iii How to optimize service granularity with consideration to development costs and portfolio manage-
ment?

Research methodology: In this research project, we used a multi-method qualitative approach to
analyze the problem and look for supporting practices in the literature to identify our proposed approach.
The research methodology is presented in Fig 1.5. It includes the following steps:

1. Systematic literature review and analysis: we conducted an extensive systematic review of
many literature sources (35+) on service identification and modelling, service granularity aspects
and related work in studying the management of service portfolio evolution and the impact of bad
granularity decisions on costs and assets sustainability. With this desk research, we analyzed the
best practices and literature gaps and constructed our approach

2. Development of a granularity decision making solution: we constructed our solution by
combining and enhancing best practices to fill the identified gaps in current solutions and solve the
researched problem

3. Case-study (validation and demonstration): we demonstrate the proposed approach using a
case study at the host organization

Furthermore, we also validate and discuss how our developed solution can complement or guide
modern concepts in aligning IT capabilities and business needs, so it enables software companies to
apply such concepts in practice.

Contributions: Our proposed solution makes particularly the following contributions:

1. It introduces a similar modelling technique for both required business functionalities in new SOA
solutions and existing business services and functionalities in legacy systems and service inven-

8

CHAPTER 1. INTRODUCTION

Figure 1.5: Research design

tories. This can speed up leveraging assets and interpret their business capabilities to optimizes
assets reuse and development cost. Also, the variation analysis of required functionalities and past
delivered business functionalities in the design loop prevents developers from spending unnecessary
efforts and increase future costs. Moreover, it allows development teams to learn from successful
cases in already designed solutions

2. It considers modelling the decomposition of existing business functionalities in legacy systems from
their fine-grained function units to establish the service portfolio. Those models can be used in the
variation analysis to discover potential code and reduce service implementation costs

3. It offers suitable indicators or metrics for measuring service granularity and estimate services
costs to allow comparing various granularity options and reuse of existing building blocks from
an economic perspective in the decision pipeline, before considering implementing new services or
refactoring existing ones

4. With the continuous development in Agile projects, it works as a self-learning tool through learning
from past support and models, costs and issues to take new design decisions and enhance them.
This allows to sustain the service portfolio and align IT assets with business needs continuously.
The self-learning dimension develops granularity patterns over time to solve similar domain prob-
lems

5. As a result of having the continuously updating knowledge-base and the integrated indicators, the
approach connects development activities and stakeholders with portfolio management in a seam-

9

CHAPTER 1. INTRODUCTION

less way. It is unlike existing methods allows those to send feedback to each other and mitigate
risks and coordinate between the various stakeholders around business value and customer needs

6. It can guide Agile teams in establishing and maintaining an evolutionary architecture for SOA
solutions, in which change is encouraged and is revertible without causing pain to portfolio sus-
tainability and solution’s reliability

7. It is easy to extend the portfolio management and introduce more long-term indicators to measure
the impact of daily decisions on business and quality of services. Those work as predictive alerts
to prevent long-term damage to resource productivity, assets sustainability, customer satisfaction,
and architecture resilience to change

1.4 Outline

The rest of the paper is organized as follows: Chapter 2 presents state of the art, related work, and
literature gaps analysis. In Chapter 3, we present the design of our self-learning granularity decision
and portfolio management approach. Chapter 4, contains the implementation details of this solution.
In Chapter 5, we present a case-study from the host organization. The chapter includes a brief sum-
mary of the preliminary research activities for analyzing the problem and collecting requirements and a
demonstration of the proposed solution using the case. In Chapter 6 we answer the research questions
and discuss our contributions with various topics. Chapter 7, presents uses of the solution in different
contexts. Finally, in Chapter 8, we share our conclusions and propose future research directions.

10

Chapter 2

State of the art and related work

2.1 Systematic literature review and analysis

To develop a solution that allows software companies to effectively manage the evolution of their portfolio
in the long term and align assets with business demands, we reviewed various literature sources using the
systematic literature review method proposed by Kitchenham [5]. The major goal was to explore best
practices in service modelling and to cover the various service costs that are influenced by the choice of
service granularity and service modelling techniques. Different combinations of the following keywords
were used to query literature:

SOA, Service identification, Migration Legacy code, Service granularity, Business Process Manage-
ment, Cost benefit analysis, Development cost, Composition cost, Decision framework, Agile, Service
sizing, Reusability, Assets modelling, SOA modelling, Requirements modelling, Service catalog, Service
description, Service portfolio management, Evolutionary Architecture.

The following portals and electronic databases were used to query for literature sources:
IEEE Xplore (IEEE), SpringerLink (Springer), ACM Portal (ACM), Research gate, and CiteSeerx.

To make the query outcome as reliable as possible, refereed articles in conference or journal, cited
articles in other articles, publication of various academic communities, and published book with various
references to were considered. We skimmed through papers, namely: title, abstract, and conclusion, to
exclude papers not within our scope of research at an early stage. The survey led to prior research work
in the concepts of agility and reusability, benefits of adopting SOA, service identification and granularity
decision approaches and cost estimation approaches. Once the gathering phase was done, a processing
phase has started to read papers in depth and select and categorize papers within the scope of this
project. After that, a careful assessment of current work with respect to the candidate research ques-
tions was done. As a result of this, we present an extensive summary of the current work and the useful
knowledge related to our research questions. The information is categorized based on the topics of in-
terest, each category is covered in a separate section. In the last section, we briefly describe the gaps we
would like to fill in this project.

2.1.1 Service granularity and service identification and modelling

Service granularity which refers to the scope of functionality in the service, has the functionality as an
essential aspect by definition [13]. A service, on the other hand, should focus on a certain purpose and
therefore should serve a specific functional area in the business domain. Besides functionality, Steghuis
[29] identifies composability, genericity, context-independence, complexity, sourcing, and performance,
as important aspects of service granularity.

To identify and create services to fit business needs and cut development costs, the literature suggests
top-down, bottom up, and a range of hybrid approaches.

Bottom-up approaches: In bottom-up approaches, the service identification starts from analyzing
existing and legacy systems to identify function units and code that can be reusable and provide lower

11

CHAPTER 2. STATE OF THE ART AND RELATED WORK

cost solutions to implementing underlying service functionalities that support customer solutions. This is
especially beneficial if the existing code is costly to rewrite. It can include data flow and code analysis and
code dependency analysis, database reverse engineering, documentation analysis, and expert judgment
in business to align extracted assets with business demands.

Kulkarni and Dwivedi [21] applied a bottom-up approach to a case in the financial industry to analyze
the impact of service granularity on the realization of SOA. They focused on finding the optimal granu-
larity in the service identification phase by starting from the case and applying function decomposition
techniques to the existing system to extract the finest functional units. They used the decomposition
result to form a picture over the future required functionalities and specifically focused on reducing de-
pendencies between services to reorganize units and identify potential services, which are divided into 8
classes based on stakeholders taxonomy and identified business domain such as taxation and retirement
plan.

Even though they propose to apply their approach of decomposing units based on dependencies and
classifying them iteratively to arrive at an optimal service composition, their method doesn’t evaluate
the impact of granularity on the development cost in each iteration. Moreover, such approach can also
be challenging, especially with the lack of an up-to-date knowledge-base or design documents.

In general, what is good about the bottom-up approach is that it can provide an understanding of
the capabilities of current systems and offer high flexibility in composing services from existing functions.
However, it doesn’t necessary catch the business intent of identified functionalities and can tie services to
their originating technology and environment. Therefore, it is often combined with service goal modelling,
domain decomposition, and domain expert analysis to define the required business functionalities in
business models and map them to existing function units to enhance the alignment between business
demands and existing software assets [3].

Top-down approaches: In the top-down approach services are identified based on analyzing the
application domain and the business process to build a conceptual model for functional requirements,
then decompose those requirements into future functionalities to be exposed as services, based on their
business value to customer or namely, their value in fulfilling a customer need or support a business
use-case [15]. Also, this approach requires an understanding for the business models and careful analysis
of customer demands, as well as more involvement from management, to define target service portfolios.
It also requires a high level of maturity in adopting SOA and the various involved processes of creating
and deploying services, and in maintaining service portfolios.

Jiang et al. [16] constructed and applied a similar approach to support the choice of service granularity
based on a high-level abstraction of business process. They analyzed and decomposed various business
processes for customers into smaller tasks and used the resulting statistical and similarity information
to determine the service granularity levels. However, they didn’t consider analyzing existing services
and didn’t reach the implementation level, which can result into introducing redundancies and facing
difficulties in aligning the business goals with implementation domain and the functional capabilities and
limitations.

In general, applying a top-down approach allows catching the business intends behind the services.
However, it requires analyzing various business models and decompose them to spot recurring tasks and
granular units of work, before creating those services. Otherwise, adopting it alone in the development
cycle when a new solution for certain customer has to be built can lead to missing the change of reusing
existing units or already available services and can increase the chance of service duplication and overlaps
in functionalities which leads to a higher maintenance cost.

Hybrid approaches: To consider customer’s requirements and business objectives as well as the
existing systems and services, various hybrid and meet-in-the-middle approaches that combine activities
from top-down, bottom-up, business goal analysis, or service goal modelling methods are used.

Those approaches often decompose application domain and business processes into granular tasks and
further into logical units of work, and analyze existing code to extract function units and reorganize them
based on their value to business, then they use a gap-analysis between the outcome of the requirements
decomposition and existing assets analysis, driven by business goal analysis and other methods such as
business expert opinion or algorithms that can reduce dependencies between services. This gap analysis
usually aims to check what infrastructure, resources, or legacy code reusability in creating the identified
services and how to layer services and define implementation components in one SOA solution.

Arsanjani et al. from IBM [3] introduced SOMA approach which includes, top-down, i.e. domain
decomposition, goal service modelling, and bottom-up activities, i.e.analyzing existing assets. They

12

CHAPTER 2. STATE OF THE ART AND RELATED WORK

recommend to start by analyzing SOA solution goals and extract subgoals that must be met to realize
goals. They suggest identifying Key Performance Indicators (KPIs) to evaluate whether a goal can be
achieved when slicing the functionalities, such as Increasing the number of online users of banking services
when developing a solution as a set of banking services for a certain bank. On the other hand, they
model business processes and partition those models into distinct domains and functionalities iteratively
and perform variation analysis on required functionalities. They also analyze existing code and focus on
assets that play a role in implementing part of the required functionalities. They finally suggest mapping
the outcome of the source code and existing APIs analysis to the identified business functions from the
top-down approach. Initially, a coarse-grained mapping of business activities to the existing assets and
interfaces is done and this is further refined to increase the chance of using existing assets. SOMA offers
a good degree of prescription, as the seven described activities are detailed and have an identified input
and output. However, the method doesn’t describe how created services can be reused in new solutions
and how to maintain the sustainability of service portfolios when more SOA solutions are delivered.

Albani et al. [2] discussed the granularity from a functional point of view. They proposed a method
to identify existing functional components in current systems and map them to the required business
tasks. They suggest grouping rules that are based on maximizing coherence and minimizing dependencies
between functional components and to have components that belong to a functional perspective grouped
together.

Other proposed methodologies provide general recommendations for combining bottom-up and top-
down activities, such as SOAD (Zimmermann 2004), SOUP (Mittal 2006) and SOAF (Erradi et al 2006).
However, they miss identifying how to match needed services to existing services for new solutions and
don’t discuss how to sustain the service portfolio. On the other side, many other methods focus on the
technical perspective of creating services and use algorithms to find optimal granularity and composition
of IT services to deliver functionality by reducing dependencies or optimizing performance and cohesion.
Those methods usually focus on reusing legacy code and migrating systems to SOA, rather than on
developing solutions for customers in a later stage of adopting SOA and service lifecycle (Offermann
2008, Winter 2008, Verma & Shah 2011, Jiang et al 2011).

2.1.2 Modelling techniques

Services and software assets: Modelling functional requirements and align customer business goals
and IT capabilities are often challenging. When transforming customer requirements into software or
services, the business process and the flow of activities in requirements are captured and refined. There
are various modeling notions that can be utilized to model the various activities and the flow of work. One
of those modelling notions is the Business Process Model and Notation (BPMN), which offers a strong
tool to model the flow or orchestration of high-level business services to realize customer requirement
and gives an abstract view of how business activities take place by customers and what dependencies
between those exist [4]. Statecharts and petri-nets to analyze and validate the sequence of execution in
composite services are also used [18]. The underlying functionalities of the high-level business tasks or
services are usually defined by breaking down user stories in Agile into manageable stories, so they can be
worked on iteratively. Those functionalities are often modeled with Unified Modeling Language (UML)
(activity version) or call hierarchy diagrams and feature trees [34].

Besides modelling requirements and service composition when designing new SOA solutions, there
are also many modelling languages and ontology proposed in literature (SOMA, SOAF, UML-s, SoaML,
OASIS) that offer common semantics frameworks to describe service assets and also the relationship
between the various elements in SOA such as service composition relations, and to clear the ambiguity
across different applications and ease discovering assets by architects and developers to be reused in
a new solution. On the other hand, for service inventories and existing services, since companies often
reuse IT services to assemble various solutions and realize different business services, literature emphasize
the need to have a standard knowledge model to describe services and understand the composition of
business services and solutions, so SOA services can be reused when possible [33, 3].

Architectural decisions: Modelling information about architecture decisions such as granularity de-
cisions is important according to Zimmermann [24]. Zimmermann constructed an architectural decision
modelling guidance and identified decisions by a set of informational representations. A decision ac-
cording to him should be triggered by a problem statement or an observation. The information should
include the recommended decision or action and decision drivers. Decision drivers can be mainly, quality
attributes, cost attributes, measurable business benefits, or feasibility of using technology. Furthermore,

13

CHAPTER 2. STATE OF THE ART AND RELATED WORK

Zimmermann suggests including architectural alternatives of the decision to not get stuck within one
option and miss the opportunity to consider and compare other options or use them in the future to
guide and optimize the decision making.

Even though Zimmermann talks about technology, tooling, and high-level architectural and outsourc-
ing choices such as workflow and messaging engines, his proposal of logging problems and linking them
to risks seems suitable in the context of our research project.

2.1.3 Service granularity and costs

The granularity of SOA services is crucial for development costs. It can affect reusability while increasing
complexity and change cost and lowering coherence [29]. Development cost in SOA applications doesn’t
only come from implementing new services that are needed or not discovered in the service catalog,
considering reusing existing services by combining those with other services comes with composition
costs. Having too many fine-grained services can increase reusability of those to realize various business
processes and reduce implementation and maintenance efforts, while having coarse-grained services with
minimum dependencies on each others helps realize the required business functionality often with less
SOA services, thus less composition efforts [16, 21]. Literature suggests that the more coarse-grained
the services are, the fewer composition efforts may be required because of having fewer components or
services to combine to realize a functionality. Fine-grained services in principle can be more reusable
that coarse-grained services. However, this is also related to the type of functionality and its business
value [13].

Besides that, service sourcing options should also be considered [29]. With open-source solutions
or outsourcing part of the work trending, discovering services in repositories or lifting part of business
services outside the company through strategic partnerships became very common. This made choosing
the granularity of business services critical to the integration efforts and enhancing the chances of inte-
grating external services in solutions to fulfill customer needs. When discovering and integrating services
from the local service catalog, public repositories, or partner services, having a standard description of
service interfaces for internal services is important to make the discovery and integration process efficient
and doesn’t miss a chance of integrating external services and cutting costs. Cardoso et al. [14] also
concluded that granularity can affect the seamless integration and plays an important role in aligning IT
services with business needs, especially as an IT service can be reused across multiple business processes
to realize different business functions.

Moreover, change cost when requirements change and solution evolves should also be considered when
slicing business functionalities and considering levels of granularity, but it is hard to predict beforehand.
According to Zhan et al [34], change cost increases when the responsibility of services increases and vice-
versa. In other words, the service is coarse-grained service, the more efforts may be required to make a
change to it or refactor it. On the other hand, a change in service or technology and redeployment of
services that are reused and heavily consumed can affect business more due to the service downtime.

The long term aspect is very critical as well. With the continuous development of SOA applications,
introducing services with improper granularity or overlapping services can increase service inventories
management and re-engineering efforts as well, which is crucial for business [28].

2.1.4 Cost estimation methods

COCOMO II is often used in component-based development with estimated number of Source Lines
Of Code (SLOC) or function points to estimate costs of implementing services. However, Tansey and
Stroulia [30] attempted to use this method to estimate the cost of implementing and migrating systems
into services. They concluded that the method should be extended to consider the composition costs and
reusability benefits. Also, Santillo [27] tried to use function points in estimating service implementation
cost. However, since functions in SOA represents a real-life encapsulated business service to customers, he
concluded that this algorithm is difficult to apply and that the effort to consider existing implementation
(e.g. legacy code) as a service cannot be estimated. He alternatively suggested measuring costs on the
service level. This was also proposed by Liu et al [17], who suggested to estimate the service size and
combine it with infrastructure and technology cost. However, they didn’t present how service size is
measured. To look further into how sizing services can be done, we researched the metrics proposed
by Zhan et al and Zimmermann [34, 23] to quantify the functional scope of a functional component in
respect to the business functionality scope in a solution and we improved it to be used in the context of
the service granularity.

14

CHAPTER 2. STATE OF THE ART AND RELATED WORK

Furthermore, expert judgment is also a common method to estimate the cost. However, since it’s
driven by experience in certain projects, it is hard to generalize and can easily fall into the trap of
underestimation due to human biases, SOA complexity, and the uncertainty about choosing right modu-
larity and granularity, in respect to future reusability and costs as well as customer change of demands.
Therefore, it is recommended in combination with other methods such as analyzing historical data or
calibrating cost factors periodically to cover past efforts.

In Agile projects, cost or efforts estimation is often done by extrapolation methods using historical
cost data and backlogs, which takes into consideration the productivity of teams and the development
work done is in respect to the required development efforts to have a final product. User stories are
analyzed and broken down to identify functionalities. Therefore, story points are often used instead of
SLOC as a measure for size and complexity. This is because project scope and sprint scope don’t map
easily to the decomposition of functionalities needed for function points, especially when function units
may overlap many stories and services can be combined in many ways to implement a wider business
function and high-level features [10].

2.1.5 Risk mitigation

Risks discussed in literature concern the granularity and service design decisions are at the technical
level, such as producing services with shared data models that requires revisiting the implementation of
other services when one service changes, and other risks concerning service performance and business
disruption due to IT service downtime or incidents [9, 31].

Other risks concern sourcing and managing knowledge about existing assets and delivered SOA solu-
tions, as IT team members can resign or undergo bad conditions which disallow them from collaborating
in labor. Therefore, having standard procedures to manage services and a standard knowledge model
for available services and assets are two important aspects to do the required development task, manage
the level of service quality efficiently, and mitigate such risks [36].

Moreover, without a periodic assessment of the benefits of available and managed services as well
as reflect on weaknesses and strength of design decisions when solutions evolve, it is difficult to keep
solutions sustainable and service inventories manageable. Improper design decisions can lead to having
services with small business value or services that cost a lot of efforts and customer’s business disruption
when technology changes. It can also make it hard for the software company to assign and evaluate
proper KPIs for assessing the risks, costs, and benefits of delivered business services to customers [28].

2.1.6 Assets sustainability and Evolutionary Architecture

In software engineering, sustainability is defined by the ability of software to preserve over time. Choosing
improper boundaries between services in a SOA solution can result in higher change cost and future
maintenance and re-engineering costs. This can affect sustainability negatively and can cause producing
complex or unnecessary services and a growth in size and number of services with low reusability and is
costly to fix later[26].

Sustainability is crucial in Agile continuous development and delivery as well. There is always the
need to add extra features and perform changes rapidly without breaking the solution [6]. Leveraging
service assets that are coherently described can increase the chance of reuse instead of creating new
(possibly overlapping) services to assemble the scope features. This way, the incremental development
helps in optimizing the choices to slice functionalities and development costs iteratively to meet customer
needs basing on decisions in past releases and existing assets. Therefore, it helps in maintaining service
portfolios and suitable service assets for business [11].

Besides that, it is common when adopting SOA to create generic service assets to serve business for
years and to identify services in a solution that can evolve following the incremental development and
changes in requirements without spending too much efforts or affecting solution sustainability.

Researchers tried hard to find an answer to the question: how is long term planning possible when
things change unexpectedly. They tried to observe the software architecture and assets evolve in various
projects over time to be able to define proper strategies to reduce creating solutions with high future
maintenance costs and are non-resilient to change and adds more service assets that can increase the
size of service inventories and are hard to be reused. However, this old method of solving the problem
of uncertainty turned to be ineffective with the continuous changes in ecosystems, as changes are hard
to predict [25].

15

CHAPTER 2. STATE OF THE ART AND RELATED WORK

As an alternative to such strategies and to enable development teams build solutions iteratively,
facilitate changes, and keep the software reliable every sprint, the evolutionary architecture idea came
to life which is suggested to ease change and rolling back changes and facilitates experimentation and
response to customer feedback without having a damaging impact on solution sustainability and increase
in maintenance and re-engineering costs. The domain perspective of the evolutionary architecture which
is important in modern design is inspired by Domain-Driven Design (DDD) to support the incremental
guided change in Agile as one dimension between multiple dimensions. Changes are suggested to be
isolated based business contexts, i.e. business domains, so teams can be organized around domain
products. Other key characteristics and principles in the evolutionary architecture are as follows:

∙ Modularity and coupling: the ability to separate the system into components with clear boundaries
and minimize dependencies to facilitate change and revert change with less pain and to have a
reliable working product each iteration

∙ Separate domains: assets should be organized per domain and around business capabilities to reduce
coupling, which moves SOA from using partitions of services in technical layers, towards partitioning
services based on business needs

∙ Fitness functions to guide change: those can be used to measure whether service assets fulfill non-
functional requirements and the evolvability of architecture and solutions

∙ Last Responsible Moment: decisions should be delayed until enough information is available. It
would be efficient to guess right what the world would be like in 15 years from now. Unfortunately,
systems don’t display the same characteristics and demands can change. Therefore, it is important
to know when to make a decision to change and evolve assets

∙ Bring the pain forward: with frequent releases, the development pipeline should allow for fast roll-
out and rollback. It may hurt to deploy frequently, but this allows for continuous improvement and
lower efforts over time. This way, developers can learn how to make their implementation more
integratable and improve loose-coupling

∙ Experimentation and technology change: facilitate experimenting with various options and new
technologies which allows for architecture to evolve and change without breaking other components

Evolutionary architecture however is still an abstract idea. There are no concrete practices and
activities that can be followed to establish and maintain such an architecture for SOA solutions.

2.1.7 Service Portfolio Management

Traditional management approaches identify one central business representative to control the various
processes and management of the business services and the quality of services the company offers to its
customer. This central governing body usually reviews planning new services and changes before they
are implemented. It can hardly address collaborative decisions and the outsourcing part of work. Also,
such processes usually focus on faults and delivery efficiency rather than assets capabilities, lifecycle, and
evolution. This results into assembling assets that are designed for success in one solution rather than
being resilient to change and reuse.

Modern organizational structure on the other hand focus on giving autonomy IT and business teams
and enhance the coordination between them through standardization of flow of work, training, and
knowledge [20]. All teams are responsible for making the story successful. They usually have clear
responsibilities and should access the right information at the right time to be effective in performing
their job. Moreover, With the modern iterative delivery, outsourcing, and customer experience based
approaches, standards such as ISO/IEC 20000, ITIL, TOGAF, and FitSM are proposed to offer service
providers models, templates, and procedure to enable them have collaborative management of service
portfolios and meet SLAs with customers. It allows supporting customers and follow up on changes and
fixes to delivered services efficiently through structured processes and clear processes ownership [28, 12].

Compared to other standards, FitSM is considered to be applicable with less efforts. It offers
lightweight processes for service portfolio management, team management, and risk management, among
others. It is deemed to allow service providers to govern their delivered business services and resource
investment, and coordinate roles and responsibilities of IT and business stakeholders around support-
ing customers needs. This is especially important when business grows and more services need to be
managed.

16

CHAPTER 2. STATE OF THE ART AND RELATED WORK

2.2 Literature gaps analysis

In general, hybrid approaches that offer strategies to decompose requirements, extract existing assets
and analyze the gap between them can increase the opportunities of reusing an existing component
or implementation and optimize the alignment of existing IT assets and requirements in a new SOA
solution. Approaches such as SOMA and SOAF provide detailed activities in the service identification
and modelling phase and combine business process and domain decomposition with business goal analysis
and existing code analysis to identify services. However, they don’t offer an evolutionary overview for
service portfolio when solutions evolve and more solutions are deployed. Those approaches don’t discuss
various options in taking granularity decisions and include the development cost dimension. They also
don’t offer a methodology to allow IT teams who only see backlogs and scoped features leveraging
available assets and already delivered solutions efficiently and understand how those services were used
in past and can be used to assemble business services and solutions, so they can reuse them to cut
development costs.

Without proper modelling strategies to take into consideration the evolution of assets and speed
up leveraging existing assets and understanding their capabilities to be reused, Agile teams may take
improper granularity decisions in the design loop and spend efforts on creating services that may be
hardly reused in the future and increase the size of service inventories. The complexity of leveraging and
managing a large number of assets which will be high can cause a reduction in resources productivity and
efficiency of deliveries. Moreover, the re-engineering efforts to fix overlapping services, merge services,
or phase them out while solutions in production still use them become very high and costly. This can
also cause unnecessary business disruption to customers.

On the other hand, service identification methods that use local optima algorithms to slice existing
code to reach acceptable dependencies between services and combine it with requirements may increase
complexity and doesn’t consider portfolio evolution as well. They don’t necessarily align services with the
business needs and can generate services that are tied to their technology. When services and business
needs start to change, optimum loose-coupling and creating replaceable services sound to be a dream
rather than an achievable goal. Keeping track of solutions costs and portfolio sustainability and the
status of service inventories while daily design decisions are being taken by various developers working
on different projects stays hard.

Even in the example of the host organization, when web applications with many similarities are being
developed and with very knowledgeable business people in market and competent development teams,
the time pressure from customers and with the lack of visibility and management of the existing assets
companies can fail in transforming their business strategies and business portfolios to suitable service
assets, and can introduce assets that need more efforts to be integrated in new solutions and to be
maintained.

As a conclusion, when solutions evolve and with scattered knowledge about the business capabilities
of existing assets, past development efforts, and the impact of the continuously taken design decisions
on costs and business, it is hard to stay content with the evolution of assets and maintain a set of assets
that suit business needs and are affordable to manage. From our literature review, we couldn’t find an
effective approach for slicing functional scope and identifying and managing required services that take
into consideration those aspects.

To fulfill the identified gaps in existing approaches, we integrated best service identification practices
and added the development cost dimension and a knowledge-base to reflect current portfolio situation
in one approach (See Chapter 3).

17

Chapter 3

Granularity decisions based on
software development and portfolio
evolution

In this chapter, we present the core idea of our approach for identifying and modelling services for
new solutions in Agile development methods and managing the evolution of the service portfolio. We
explain the various cycles in the approach and how they give feedback to each other with the continuous
development and delivery. Fig 3.1 depicts the basic idea and the loops in the approach.

Figure 3.1: Integrated cycles in proposed approach

18

CHAPTER 3. GRANULARITY DECISIONS BASED ON SOFTWARE DEVELOPMENT AND
PORTFOLIO EVOLUTION

3.1 A general idea

The activities in our approach can be split into three cycles:

∙ Software development cycle: this cycle includes the activities to decompose and model requirements
and access models for existing assets and services, to identify and model required services in the
solution. The activities can be initially used to establish the first portfolio of services from existing
legacy systems and envisioned requirements for future customers and to migrate legacy systems to
SOA services. In such case, assets should be analyzed and modelled

∙ Service portfolio management cycle: this cycle include the assessment of the identified and modelled
services from the development cycle. Also, it covers scoping and planning work in the portfolio
pipeline. Besides that, in this cycle the software company monitors deployed services based on
analyzing planned investment, already spent efforts, raised issues, customer feedback, and other
observations by business and IT stakeholders to take action and enhance future decisions in the
granularity decision pipeline

∙ Knowledge management cycle: the activities in this cycle maintains the supporting knowledge
about delivered business solutions to customers that is used to enhance the granularity decisions
in the decision pipeline. The knowledge includes past spent efforts on developing services and
SOA solutions and proper models for available business services from service assets to speed up
leveraging them and enhance assets reusability

3.2 Detailed explanation of cycles

3.2.1 Software development cycle in Agile development

Those activities concern taking granularity decisions to identify and model services starting from require-
ments and available assets and assembled business services. The activities are as follows:

Analyze requirements and identify business functionalities: This step involves a top-down
approach starting from functional requirements and user stories. Those can be broken down into business
processes and high-level activities. Each activity can be decomposed further to extract the various
business functions and their underlying functionalities.

Model business functions decomposition: The decomposition of required business functions should
be modelled, so it can be compared to existing business functions and services in already delivered SOA
solutions. This decomposition is the base to slice the required scope of functionality and define levels of
granularity for services based on leveraging existing assets and integrated cost metrics.

Extract and model existing assets: To use existing SOA services and already developed business
functionalities in current solutions and cut development cost, the solution considers to extract and model
similar business functionalities to be compared to requirements.

At an early stage of adopting SOA, companies should start from already delivered or legacy systems.
Function units that contribute in realizing similar business functions or can help in realizing part of
those should be extracted. Their natural decomposition in delivered solutions can be modeled using
similar modelling technique as requirements to ease comparing both models and reuse of existing assets
to reduce costs and not increase size of service inventories with overlapping assets.

In the next iteration of the development cycle, business services and solutions that are already de-
veloped and deployed will be already modelled from existing IT services and can be fetched from the
knowledge-base instead.

Analyze variations: Variations between the different required business functions and also with ex-
tracted/fetched precious assets can be analyzed to spot deviation levels and similarities and avoid creat-
ing overlapping and redundant services. This can help take granularity decisions and maximize reusing
existing legacy code and existing (composite or atomic) SOA services.

19

CHAPTER 3. GRANULARITY DECISIONS BASED ON SOFTWARE DEVELOPMENT AND
PORTFOLIO EVOLUTION

Consolidate services: As a result of the variation analysis, there will be multiple possibilities to
define levels of granularity for the required functions and to extend the portfolio in case of legacy to
include more functionalities from assets. As a result, a list of candidate services and their granularity
for every option should be identified to be assessed from an economic perspective in next steps and take
final decisions. There may be a need to readjust requirements decomposition or refactor existing assets
to maximize the reusability, as one of many options. When adopting the solution for some time, decision
rules can be derived based on following up on issues, analyzing past spent efforts, and other metrics to
measure the impact of past decisions on business and costs.

Estimate costs (efforts): In this step, costs for creating and composing services and for refactoring
existing code and services in the identified portfolio should be calculated. The approach integrates the
use of historical cost data from already created services to have a more accurate cost estimation. It
is important to log spent efforts in past releases and to size services and their functional scope in able
to fetch proper past data and take cost-effective granularity decisions. When having various options
or when starting from different models in legacy code or when decisions should be taken to reorganize
business functions composition from existing function units, there is a need to estimate the cost for all
options to take final decisions.

Assess services and take final decisions: Based on the estimated costs and identified levels of
granularity of services, team lead or portfolio process owner should take final decisions based on costs
and discovered options to plan services in the service pipeline and allocate resources. Currently, the
solution only considers the cost factor and the capabilities of leveraged assets to take decisions. However,
in the future, it is easy to add other long-term indicators in the portfolio management cycle to derive
observations and enhance the decision support.

3.2.2 Portfolio management

A part of the portfolio management is to guarantee that changes and incidents in services and solutions
that are deployed are managed as well as evaluating existing IT services and their suitability for business
and customer needs. It is important in SOA to continuously monitor the quality of offered services to
customers and costs and coordinate between teams towards supporting customers and their changing
requirements through proper processes. This is also important to maintain a continuous balance between
short-term decisions that optimize local development costs, namely, efforts in one development iteration,
and the long term impact of taken decisions on costs and business.

Plan work and deployment: As part of the portfolio management to plan for creating, deploying and
publishing services and to allocate proper time slots and resources. The estimated efforts and measured
granularity can be used to scope development work. Moreover, the modelled services can help in planning
for deployment.

Monitor deployed services and costs: In case of change requests or incidents, those usually go
through a standard process with dedicated process owners and participants so process owner can report
to them to follow up. This is key for delivering high quality solutions to customers and meeting service
level agreements. In this regard, templates and processes in standards such as FitSM can be used
to complement our methodology and make sure changes and fixes are handled by development teams
efficiently. This is also important to keep customers informed about the status and to have their feedback
reach the right teams. However, this requires up-to-date information about assets and spent costs, which
is taken case of by the knowledge management cycle to make sure that the knowledge-base reflects the
current situation and the evolution of the portfolio. The logged costs from each development iteration
can be used to monitor investments and compare it to the initial estimated costs and sizing as well.
This is because the development teams will work on the identified services iteratively and each iteration,
actual efforts/costs are logged. All those monitoring processes offer an up-to-date feedback to solution
architects to revisit published decisions and decision rules, which allows to enhance granularity choices
in next development iterations.

20

CHAPTER 3. GRANULARITY DECISIONS BASED ON SOFTWARE DEVELOPMENT AND
PORTFOLIO EVOLUTION

3.2.3 Knowledge management

Adopting the proposed modelling and decision making approach for every development iteration and
for the various products establishes and maintains an up-to-date knowledge-base, which contains the
models of already delivered business services and functionalities in previous releases as well as past
spent efforts. However, it is important to schedule periodic checks and manage this knowledge to make
sure that it is reliable and standardized, so all teams can access and use it efficiently. Interpreting
the feedback from knowledge-base to the development pipeline correctly and quickly is important to
avoid introducing improper granularity decisions and create unnecessary services. Moreover, modelled
business functionalities and assets can be assessed periodically by solution architects and when recurring
problems exist, to check overlapping capabilities and discover new potential business services based on
the variations.

Interpreting the knowledge correctly is also important for the activities in the portfolio management
pipeline to monitor costs and issues. It also helps planning change requests and bug fixes and enhances
communication with customers to support them efficiently.

Maintain available services and modelled assets: When starting from existing and legacy systems
to establish the initial portfolio of services, those models will be generated from existing assets and be
published in the knowledge-base. When using our service identification and modelling activities in every
development cycle, identified and delivered services will be modelled and added to the knowledge-base.
However, there is a need to keep maintaining the modelled business services in the knowledge-base due
to the evolution of solutions and phasing out services.

Maintain historical cost (efforts) data: Spent costs on already created and deployed services should
be analyzed to maintain a standard historical cost data for estimating costs in the decision pipeline. It
is important to keep an up-to-date overview for both: 1) supporting the decision making process; 2) and
evaluating the impact of those on costs and business in the portfolio management part. This task of
maintaining an overview of historical cost data that reflects the current situation should be assigned to a
dedicated person. It can also be automated in the task tracking system, so once spent efforts are logged,
the overview is updated in real-time. However, this requires good discipline from development teams.

The historical data is important to form a consistent and realistic cost estimation, take proper design
decisions, and manage service pipeline and resources. It can also help service providers to understand
the initial investment on services for periodic financial and cost-benefit evaluations.

Derive observations and decision rules: At a later stage of adopting the solution and with the con-
tinuous delivery, observations can be derived from recurring problems, customer feedback, and analyzing
spent costs in previous releases, among others, to support choosing levels of granularity in the granularity
decision pipeline. They can also be found during the variation analysis and service consolidations, so
improper past granularity decisions for similar functionalities can be reported and published.

Observations can be used to define decision rules that support choosing levels of granularity in the
future. Rules can also be derived from business strategies, best practices, market standards, and reuse
plans for existing services. They can also reflect success stories and reference models in certain domain
and industry to support SOA designers and development teams.

Introducing such rules allow developing granularity patterns for solving similar domain problems and
enhance the learning process based on problems in past solutions. However, they should be revisited
periodically to enhance them based on the current situation of costs and assets. Besides that, solution
architects can also schedule periodic checks to analyze existing business services in the portfolio and spot
deviation levels and redundancies or overlapping services to publish such rules as supporting knowledge
in the decision pipeline.

A decision rule can be identified by an observation. This observation can either a problem or a
situation in which certain functionality need to be realized and granularity choices should be taken.
Rules can also concern a certain project, a set of projects, or certain domain or subdomain and can
be published by responsible solution architects to be queried in design loops. Each rule should have: a
recommended action and possibly drivers, a reference to a good or bad granularity example from previous
solutions, risks (reflecting a learned lesson and found issues), and optionally alternatives (see Fig 3.2).
A simple example of a decision rule is as follows:

21

CHAPTER 3. GRANULARITY DECISIONS BASED ON SOFTWARE DEVELOPMENT AND
PORTFOLIO EVOLUTION

Figure 3.2: Decision rule

OBSERVATION
A credit scoring model is based on business risk ratios

Recommended action and drivers: Business risk ratios are usually standard ratios that are
calculated for various scoring and risks assessment models. Implement the scoring model and ratios
in separate services

∙ Risks and sensitivity points: Including ratios functionalities to credit scoring model makes
them hard to be reused to assemble various models and business risk features

∙ Reference: a reference to an example

Alternatives: Refactor existing service or functionality and separate the scoring model from ratios

Introducing decision rules at a later stage of adopting SOA don’t only support service decisions in the
design loop, they work as a lightweight decisions logger and alignment of all teams at the company.

3.3 Interactions between lifecycles through the knowledge-base

With the continuous development and delivery in Agile, every time granularity decisions should be taken,
the knowledge in knowledge-base for modelled business services and functionalities and spent efforts as
well as past issues and risks is fed back to the design loop to take cost-effective granularity decisions and
sustain solutions and portfolios (Fig 3.3 shows the joint decision pipeline and feedback loop).

Thanks to the continuous delivery and the knowledge management cycle, the maintained knowledge
always reflects the current situation to give a reliable support to designers and portfolio staff taking
proper decisions. On the other side, observations and problems in the portfolio management cycle are
reported back to solution architects to update the supporting rules and enhance decisions. Therefore, the
evolution of service assets in the portfolio through the continuous development and delivery is managed
continuously through the continuous learning from past deliveries and granularity and cost indicators.

Connecting Agile development, portfolio management, and knowledge-management cycles through
the continuous loop in one approach allows Agile development and portfolio management cycles to
interact and send feedback to each other, rather than having them separately. Those are usually managed
by different types of stakeholders who see different pieces of information and have to do their job. While
in our approach the knowledge-base establishes the link between those cycles. Integrating all activities
in one solution therefore allows to mitigate the risks of increasing future costs and size of inventories as
well as lowering portfolio sustainability.

Figure 3.3: Interactions between cycles

22

Chapter 4

Approach implementation

In this chapter, we describe the implementation of our proposed approach for slicing business function-
alities into services when designing new solutions and for managing and monitoring service portfolios.

The approach aims to establish and continuously maintain supporting knowledge about assets and
past design decisions and efforts for taking collaborative and cost-effective granularity decisions without
affecting future costs and both solutions and service inventories sustainability. It works as an integrator
for both Agile development activities and portfolio management during the evolution of solutions and
service portfolios in Agile.

Before we present the detailed activities, we would like to define important strategies in the approach.

4.1 Related definitions

4.1.1 Business functions classification

To speed up leveraging existing services when designing a new solution, and to organize delivered services
based on business lines and domains, so stakeholders can be organized around same domains, we propose
classifying business services and required business functions following two main classes and one supporting
class.

∙ Business-dependent service: a service which contains functionality that can be reused in solu-
tions targeting a certain business domain or subdomain

∙ Generic service: a service which is independent of the business domain and any business specific
context, e.g. email notification service, or generic document generation service. Those can be
often implemented using Commercial off-the-shelf (COTS). Even if implemented inhouse, their
evolvability is low. They can be highly reused in multiple solutions and in multiple business
processes with no dependency on other components rather than integrated COTS

∙ Supporting service: a service is needed for a business function, but it doesn’t cover a core
functionality and it is not a differentiator for the business domain

A subdomain usually corresponds to a different part of the business. In loan origination domain, risk
assessment and customer management are two different subdomains or function areas and are usually
managed by different departments and end-users of different roles in the bank. The first one may also
involve different business experts, business analysts, and development teams working on similar solutions
at the software company that offers those solutions. Business subdomains can be decomposed further
into other subdomains or functional areas, depending on the type of solutions and functionalities. For
example, account management can have customer account management and transitions and payment
management as two subdomains. Each of them may include various services and business functions.

Separating business services based on the type of business functionality or in other words, the function
area they cover in SOA can accelerate leveraging legacy code and similar delivered business services when
decomposing requirements for a new SOA solution. This can support a simple one-to-one matching of
existing services and required services in the development cycle, and in finding suitable service assets
to be reused to realize required functions which were used in past solutions [21]. This also allows
to organize teams around subdomains and function areas, so they can develop granularity patterns

23

CHAPTER 4. APPROACH IMPLEMENTATION

and enhance decisions with the continuous development and delivery and incidents analysis. Business
analysts, marketing, and portfolio staff can also be organized in a similar structure, which is recommended
to promote the continuity of teams and the coordination to deliver SOA applications [20, 36, 28].

4.1.2 Modelling technique

We propose to use a typical directed graph for modelling required business functions and their underlying
functionalities in SOA solution, and to set the identified services on the graph to indicate the level of
granularity of each service. An example of such a graph is shown in Fig 4.1. A graph will have one
head node which is the high-level business function that requires execution of the following nodes to
be realized. A leaf node is an atomic function that cannot be decomposed further with all nodes in a
business function graph disjoint. This modeling will also be used for modeling a business function from
existing units in legacy code as well as in the business service catalog.

For modeling the whole functional scope for a set of feature or a solution in the development cycle,
we will use similar graphs. Any middle or leaf node can have one or more incoming arrow from other
graphs or can be repeated in different graphs, when the function unit is required to realize more than
one high-level business function. This is unlike feature trees approach which doesn’t allow to have more
than one head node and joint nodes between different branches, in our context, between different graphs
[34]. A business unit that is needed to realize various business functions can indicate the need to include
the operation in service or create a service to expose it.

To identify services on graphs, a service can be drawn at one node of leaf to indicate the scope of
functionality this service contains (See Fig 4.2). Moreover, in Fig 4.3, we show a simple business function
that requires two other functions according to requirements. This function can be realized by s2, which
will implement the following units (leaves) in the required sequence of execution. Otherwise, it the
functionality can be realized by creating and orchestrating s2’ & s2” services instead, which are more
fine-grained than s2.

Figure 4.1: Function graph for invoice creation

Figure 4.2: Level of granularity and service reuse for two functions

4.2 Approach implementation

In this section, we first discuss how the software company can identify and model services based on
requirements and to consider legacy and existing solutions. The activities can be applied to either create
the first set of services in the portfolio from existing systems or at a later stage when new SOA solutions
are designed.

24

CHAPTER 4. APPROACH IMPLEMENTATION

Figure 4.3: Possibilities for identifying services

Next, we define granularity and cost estimation metrics that can help in estimating services costs
when taking granularity decisions in the decision pipeline.

After that, we describe how those metrics and modelled services can be used to take granularity
decisions in the pipeline.

Finally, we discuss how the continuously updating knowledge-base can contribute in giving feedback
to Agile teams in design loops as well as for the portfolio management activities and receive feedback
from the portfolio management to enhance the knowledge that is used by Agile teams.

4.2.1 From requirements and existing systems to modelled services

To implement business functionalities and identify granularity levels of the underlying services from
requirements, we start by applying a top-down approach starting from elicited requirements and business
processes to decompose business domains covered by requirements and classify and decompose required
business functions to model them. Then, a bottom-up approach is applied to consider existing assets.
For the first time applying this approach, existing and legacy systems should be analyzed to extract
precious business functions and their natural decomposition in the code to model them. Combining
those two approaches allow Agile teams to consolidate services and use our decision model to identify
suitable levels of granularity and assets reusability to cut costs. The flow of activities is visualized in
Fig 4.4. In the following section, we describe each activity in detail, when having existing and legacy
systems.

Requirements and business process analysis: Starting from requirements, the involved person in
preparing requirements should identify the business processes and business domains covered. Business
domains should be decomposed into distinct subdomains and function areas that will be the base for
classifying business services. At an early stage of adopting this approach and delivering solutions in
certain domains, there will be few classes and services under each domain and subdomain. It is the
responsibility of the person who is preparing requirements for development teams to maintain classes.
Those classes become the service categories in the catalog to search and compare services when designing
new SOA solutions. On the other hand, the company may start from envisioned requirements to establish
the first set of services in the portfolio for future customers.

For the required processes or the high-level activities, we apply a process decomposition technique to
extract the various business functions in each of them. The business functions are our base for identifying
candidate business services. Those business functions are still coarse-grained and should be categorized
by subdomain before they are decomposed further. However, some of those business functions may not
be tied to any specific function area, but rather generic.

Some business functions can be possibly decomposed further. Each of those functions may or may not
require other units to be realized. For example, for a process Manage loan payment, a business function
”Make loan payment” requires: ”calculate amount”, ”get customer account”, ”process payment”, and
”notify customer” functions. While ”process payment” may also need various activities such as ”verify
payment” and ”post payment”.

Modelling required business functionalities: We propose to model the business function decom-
position using the directed graph. At the end, the scope of functionality to be realized in a solution
will result into multiple graphs. Each graph has the high-level business function as a head node and
following functionalities. Fig 4.5 presents this modeling. An activity Activity1 needs 3 business functions
(services) f1, f2, f3 to be realized.

25

CHAPTER 4. APPROACH IMPLEMENTATION

Figure 4.4: Service identification and modelling decision pipeline

Figure 4.5: Top-down: business process and functions decomposition and modelling

26

CHAPTER 4. APPROACH IMPLEMENTATION

Extracting and modelling assets: Starting from legacy or already delivered systems, SOA architect
or a developer should analyze code. The aim is to identify precious functions that service similar business
needs as the required functionalities. The focus is on function units that are in similar function areas
and are used to realize similar business needs and features as the solution being designed.

In case it is hard to fetch function units in the code that contributes in realizing existing business
functionalities for customers and with no design documentation, reverse engineering techniques on code
and data models can be combined with automatic and manual code dependency analysis to extract the
component list, functions, and dependencies. The method and call hierarchy graphs of an existing busi-
ness function shows the natural decomposition of it from the underlying units. This analysis also allows
filtering out infrastructure and utility assets in existing code and show whether there are duplicated
function units and variations in business functions serving similar business needs in current applications.

At this stage, extracted function units in existing code are fine-grained and are combined with other
units to serve a business function in a certain function area. Therefore, their natural composition to
realize a business function in current applications should be modelled with similar graphs as required
functionalities. Modelling assets makes it easier to compare between them as a first step, and to compare
them with modelled requirements to maximize the reusability of existing function units and enhance
granularity decisions. This can also enhance exploring potential services from existing applications to
expand the portfolio being identified and plan them in the pipeline for potential customers.

Variation analysis: First, the required business functions in certain subdomains may require similar
functionalities to realize them and certain variations which can be identified. This can be due to that a
similar feature or function is needed for different types of entities or standards. As an example, applicant
nationality, applicant type, or loan product type for loan application functionalities.

On the other side, existing assets that are modelled can also have such case due to the incremental
development and targeting certain types of customers. They should be compared together and to required
functionalities to spot shared functionalities and deviation levels (See Fig 4.6). Similarities and deviation
levels can indicate a proper level of granularity in which existing assets can be used to implement
a functionality and reduce development costs. This comparison between already developed business
functions and required functions help choosing different boundaries between services on requirements
graphs and compare between options based on cost KPIs and size of scope of services later in the
decision pipeline.

For next iterations of applying the approach in design loops, business functions classification can help
to first search the catalog for modelled assets in specific function areas to include them in the variation and
similarities analysis and potentially reduce costs by deconstructing and constructing assembled services
based on requirements.

Figure 4.6: Variation analysis

27

CHAPTER 4. APPROACH IMPLEMENTATION

Services consolidation: Comparing the required scope of functionality with modelled scope of func-
tionality from assets includes checking whether there is a simple matching of required functionality and
existing function or the variations to identify boundaries. This comparison involves the following cases:

∙ Business function can be realized by an existing function/service (simple matching)

∙ Business function cannot be realized by an existing function/service (no matching)

∙ Business functions similarities were found and the function can be partially realized by function-
s/services

∙ Business function can be realized by composing various functions/services

∙ Models can be reorganized based on variation analysis of assets to maximize reuse of existing assets
and implement required functionality. This may involve the need to refactor existing services and
functions

∙ Some functionalities in assets graphs can be exposed as services to expand the portfolio. This
may be the case when it is reused multiple times in existing systems to realize similar or various
functionalities or when migrating legacy systems to establish a portfolio for future solutions

The knowledge-base, namely rules by observations can be queried to support architects with a recom-
mended action and a reference if needed. For example, if a service is found, the observation may concern
performance, mainly due to current consumption or the data size. Therefore, a reuse may not be suitable.
Architects can query rules to fetch recommendations and risks.

Moreover, existing implementation of units may not be fully suitable for the later implementation
of service operations, or may need to be refactored first to realize different functionalities or to enhance
coupling. This can also be the case for an outdated version or language or due to planned patching.

Iterative execution of variation analysis and service consolidation may be required to look up services
per function area or business process.

In the end, the levels of granularity can be defined on the (expanded) requirement graphs to show
where candidate services are and estimate costs, so that final decisions can be taken (See Fig 4.7).
When having different options, each of them will include a set of candidate services and their levels of
granularity on graphs.

Figure 4.7: Service consolidation

4.2.2 Granularity and cost estimation metrics

To implement the decision support model for the identified services, we need to have proper granularity
and cost estimation metrics. In this section, we propose suitable metrics to be used in the decision
pipeline, namely, to make cost-effective decisions and plan services as part of the portfolio management
lifecycle.

First, to indicate how granular a service is with respect to the portfolio or the set of required func-
tionalities, we need to quantify the scope of functionality it covers.

Considering the following:

28

CHAPTER 4. APPROACH IMPLEMENTATION

P is the set of the required high-level business functions (Portfolio)

S is the set of candidate services identified on the graphs to realize P

𝐹𝑃 is the set of all function units in the graphs of P

𝐹𝑝 is the set of all function units from a high-level function p in the set P

𝐹𝑠 is the set of the directly realized functions of a service s (level of granularity)

𝐹𝑓 is the set of following functions to a function f

To define granularity and cost metrics, we use the example in Fig 4.7, which shows the set of high-level
business functionalities and identified levels of granularity on graphs.

4.2.2.1 Service size and granularity size-based metric

SLOCs, KSLOCs, Function Points (FP), and Story Points (SP) are often used to size functionalities or
required efforts to implement it in Agile projects. The choice of the metric to size function units is left
to the software company. For simplicity, we will use SP in our proposed formulas. However, this can be
replaced by any other preferred measure.

A service can cover one or many functionalities, and each of those may need various function unit to
be realized following the decomposition routes. Therefore, we need to define the size of a service. On
functional scope graphs, a unit f can be either a leaf or a node with outgoing arrows.

Considering SP(f) is the size of f. The size of a leaf unit f is SP(f) and it doesn’t need any composition
efforts as it has no following units. While for a node unit f, the size of f is a sum of sizes of all following
units and the size of composition such as invocation and state controls for all following units. Since we
have function decomposition graphs for modelling the required set of business functions, we define the
size of a unit f in the graph as a recursive formula with a base-case f as a leaf.

Function size metric:

𝑆𝑖𝑧𝑒(𝑓) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑆𝑃 (𝑓), if f is a leaf unit

∑︁
f𝑖 ∈F𝑓

𝑆𝑖𝑧𝑒(f𝑖) + CompSize(𝑓𝑖), otherwise

Where 𝐹𝑓 is the set of all following functions of f, and CompSize is the given SP to perform the
composition for f. This sizing is important to estimate the effort required for implementing the logic
that is not directly realized by a service in P.

Service size metric:

𝑆𝑖𝑧𝑒(𝑠) =

|𝐹𝑠|∑︁
𝑖=1

𝑆𝑖𝑧𝑒(𝑓𝑖)

High-level business function size metric:

𝑆𝑖𝑧𝑒(𝑝) =

|𝐹𝑝|∑︁
𝑖=1

𝑆𝑖𝑧𝑒(𝑓𝑖)

Service portfolio size metric:

𝑆𝑖𝑧𝑒(𝑃) =

|𝐹𝑃 |∑︁
𝑖=1

𝑆𝑖𝑧𝑒(𝑓𝑖)

29

CHAPTER 4. APPROACH IMPLEMENTATION

To quantify the granularity, we can estimate the size of a service s in relation to the size of the
required scope of functionality to realize the high-level business function p in the set P, Zhan et al [34]
functional size metric can be generalized as follows:

Service granularity-size metric:

𝑆𝑀(𝑠) = 1− 𝑆𝑖𝑧𝑒(𝑠)/𝑆𝑖𝑧𝑒(𝑝)

Where p is the high-level business function preceding s.

For the example in Fig 4.7, the granularity of s3 is 0 which is the maximum value indicating that the
service cannot be more coarse-grained in respect to f2. This sizing can also be done in respect to the
whole set of functionalities P.

The granularity-size metric indicates how big the functionality a service implements in respect to the
required business function.

If a service s is part of multiple graphs and therefore can contribute in realizing more than one high-
level business function p in P (two or more incoming arrows to a node in 𝐹𝑠), then this size can be
calculated for each of those paths to indicate the relative size to each business function.

4.2.2.2 Service granularity-scope metric

Service granularity is often looked at from a functional point of view. The functional scope included in a
service can be indicated by how many functionalities can be directly or indirectly realized by the service.
Zhan et al also propose scope-based metrics for the functional components in relation to the system as a
whole. Those are the width and depth of the component to the overall high-level feature. However, they
concluded that each of his metrics alone doesn’t give a good quantification for the component functional
scope or the amount of functionalities realized by the component with respect to the high-level feature.
Therefore, he proposed a metric to combine both of them. We can generalize their optimized metric to
apply it in the context of services rather than the functional components as follows:

Service granularity-scope metric:

𝑆𝐶𝑀(𝑠) = 1− (𝑛𝑖 − 1)/𝑚𝑎𝑥(1, 𝑛𝑝 − 1))

Where 𝑛𝑖 is the number of all following units to a service s (following units of functions in 𝐹𝑠), and
𝑛𝑝 is the total number of units from p crossing s until all covered leaves by s

The value 1 indicates a maximum fine-grained service and 0 indicates a maximum coarse-grained
service. In our example in Fig 4.7, s3 has the value 0 in respect to f2, because it directly implements
the high-level functionality f2. However, s5 and s6 have the value 1 indicating maximum fine-grained
services. The metric can also be calculated in respect to the total number of units in P instead.

The scope metric indicates how many unique functionalities a service s can realize in respect to the
total number of functions to realize a business function.

Now, we established the granularity indicators, in the following section we propose an optional cost
estimation model to be used to estimate the various costs to create services in a portfolio P.

4.2.2.3 Cost drivers

According to COCOMO II [30], code size has an exponential effect on effort and size due to increasing
complexity. An important aspect of service granularity that influences costs is the service complexity,
namely cohesion complexity, due to the size of functionality implemented by a service. We propose to
use an exponent exp in the range of calibrated values [1.05..1.20] by COCOMO II1. The bigger the size
or scope of service, the higher will be the cost to implement it which will be reflected by using exp as an
exponent to the size.

1Following https://en.wikipedia.org/wiki/COCOMO

30

CHAPTER 4. APPROACH IMPLEMENTATION

Furthermore, junior developers may spend more time on implementing and combining services, but
their hourly rate can be less than senior developers. Experience can be reflected by introducing two or
more separate cost rates or by multiplying the efforts by an extra Estimated Adjustment Factor (EAF),
which usually has a nominal value of 1.0 and can be increased to take the case of junior developers into
consideration.

To extend COCOMO II, which is a component-based cost estimation method and consider the com-
position in SOA to deliver a business solution to customers, we suggest using block-based estimation
formulas. It is important to note that the value of the intermediate cost parameters can be a monetary
unit, man-hour, or any effort unit preferred by the software company. The resulting cost values will be
in the same unit. Moreover, sizing functions, services, or composition logic should all be in one unit, e.g.
SP.

4.2.2.4 Implementation cost

For a service s defined on the functional graph(s), the cost of implementing this service depends on the
directly realized functionality, i.e. the function unit at which the granularity is set. Also, whether the
size is measured by SP, SLOC, or KSLOC, a rate iRate >0 is proposed to represent the rate unit. For
example, when using KSLOC, the rate is the effort required to implement 1 KSLOC. We also add extra
costs iConst >0 to consider service interface, description, and publishing. This can also reflect unit
testing for the functionality or service deployment costs.

Service implementation cost metric:

𝐼𝐶𝑆(𝑠) = 𝑖𝑅𝑎𝑡𝑒 * 𝑆𝑖𝑧𝑒(𝑠)𝑒𝑥𝑝 + 𝑖𝑐𝑜𝑛𝑠𝑡

This calculation should exclude the size of SOA services that can be reused or the implementation logic
size of existing code and only considers the constant value. The refactoring effort for existing code is
discussed later.

The total implementation cost of the candidate service list to realize P is proposed to be the sum of
implementation cost for all services in S, then:

Total implementation cost metric:

𝐼𝐶(𝑃) =

|𝑆|∑︁
𝑖=1

𝐼𝐶𝑆(𝑠𝑖)

4.2.2.5 Service composition cost

In case of some services need to be combined to realize a functionality (e.g. s1 and s2), the composition
effort should be calculated. Already existing composite services that can be reused should be excluded
at a later time of adopting the approach and having service assets. The more the number of services
the more the composition effort to be spent due to the level of complexity. Therefore, we can use the
exponent to reflect the increase of complexity as the number of services increase.

A constant cost 𝑠𝑐𝐶𝑜𝑛𝑠𝑡 ≥ 0 may need to be paid, e.g. EBS, BPM engine, if this is yet to be paid
for the solution, and the composition rate scRate >0 are used to estimate the composition cost for the
minimal composition size value. This rate is different from the implementation rate, as different tools,
programming language, or people that are involved in this task.

Composition cost metric for a business function p:

𝐶𝐶𝑝(𝑝) =
∑︁
𝑓∈F𝑝

𝑠𝑐𝑅𝑎𝑡𝑒 * 𝐶𝑜𝑚𝑝𝑆𝑖𝑧𝑒(𝑓)𝑒𝑥𝑝 + 𝑠𝑐𝐶𝑜𝑛𝑠𝑡

Where 𝐹𝑝 is the set of the functions that are not realized by a service for the high-level function p.

Total composition cost metric:

𝐶𝐶(𝑃) =
∑︁
p∈P

𝐶𝐶𝑝(𝑝)

31

CHAPTER 4. APPROACH IMPLEMENTATION

Other development efforts on the activity level can also be added,if needed, such as the composition
of high-level functionalities and invocation. This is the case when new SOA solutions are being designed
and when there are already available SOA services.

4.2.2.6 Refactoring cost

In case an existing asset needs to be refactored before it can be reused, this effort should be estimated.
This effort can increase when the size of the functionality to be refactored increases. We propose to
use historical effort from functionalities of same size and the same exponent exp to reflect the increased
complexity and efforts on size increase.

Considering 𝐹𝑟 is the set of all following units to 𝑓𝑠 that need a refactoring, and 𝑟𝑐𝑓 is the refactoring
size for a function f in 𝐹𝑟, the refactoring cost for 𝑓𝑠 that implements s:

𝑅𝐶𝑆(𝑠) =
∑︁

f𝑟 ∈F𝑟

𝑖𝑅𝑎𝑡𝑒 * 𝑟𝑐𝑒𝑥𝑝𝑓

Total refactoring cost metric:

𝑅𝐶(𝑃) =

|𝑆|∑︁
𝑖=1

𝑅𝐶𝑆(𝑠𝑖)

4.2.2.7 Total service development cost

The estimated total cost of the scope of functionality in P can be calculated by summing values for
implementation, composition, and refactoring costs as follows:

𝑇𝐶(𝑃) = 𝐼𝐶(𝑃) + 𝐶𝐶(𝑃) +𝑅𝐶(𝑃)

The resulted estimate doesn’t consider any extra risks, such as people leaving teams or other cost-
sensitive factors. Those can be reflected by extra EAFs if needed.

4.2.2.8 Minimum maintenance cost

SOA encourages the implementation of a shared functionality by various applications and business ser-
vices in a separate IT service or an operation in service. However, this may not be ideal, especially if
the size of functionality is small and other aspects such as the performance, shared data models, and
cohesion complexity are considered. It can also due to setting improper levels of granularity and missing
chances to reuse operations in existing services when developing new applications. When technology or
programming language change for underlying SOA services, there will be higher costs in case of redun-
dancies and overlapping functionalities between services. The bigger the duplication size, the higher is
the cost due to the complexity. Therefore, we consider using the exponent and the rate mRate >0.

Total maintenance cost metric:

𝑀𝐶(𝑃) =
∑︁
f∈F𝑃

𝑚𝑎𝑥(0, 𝑛𝑓 − 1) *𝑚𝑅𝑎𝑡𝑒 * 𝑆𝑖𝑧𝑒(𝑓)𝑒𝑥𝑝

Where 𝑛𝑓 is the number of implementations for a function f in P.

4.2.3 Service portfolio decision model

Use of past efforts in local cost estimation: To take final cost-effective decisions for the modelled
services on graphs, estimation to the cost for implementing, composing, and refactoring those services
should be done. A comparison between the various options from an economic perspective should be
done. The integrated granularity and cost indicators should be used to do this task.

The service size metric can help in sizing service based on the covered functional scope or functional-
ities and estimate the implementation cost. It is important when adopting the proposed implementation
to follow a standard procedure for logging the efforts related to developing services, so they can be used
in estimation and to organize resources and prioritize work for new services. This is also important as

32

CHAPTER 4. APPROACH IMPLEMENTATION

part of the service portfolio management, as this data can be used in analyzing the long term impact
of creating services (granularity choices) on costs, compared to the original investment and benefits.
However, time logs, code commits, and any backlogs can be used to build an overview of spent efforts in
earlier created services of similar purposes and function area, or of similar granularity and function area,
depending on the availability of already delivered assets. In order to size the covered functionalities in
a service, historical efforts on available services and functionalities in sizing functionalities and therefore
the service.

Moreover, the proposed granularity metrics can help in splitting and scoping work in the service
pipeline and allocate resources. The granularity indicator can also show how much of the whole required
functional scope a service covers, so the level of granularity considering the whole scope and when having
different options can be compared to take final decisions.

Assessing and prioritizing needed services and functionalities: The resulting options from
previous steps should be assessed, based on the local costs and granularity indicators by a dedicated
team lead or portfolio staff to come up with the final candidate list of services and the modeled scope
of functionality, namely, directed graphs. Special cases such as leveraging legacy can also be assessed
whether this legacy code is suitable to be wrapped and exposed as services. This is also the case when
there is a need to refactor an existing service or functionality. In this case, there are multiple options and
costs. The refactoring cost in one option should be compared to implementation cost in another (See
Fig 4.8). If a service is to be implemented instead, the initial level of granularity might change to discard
existing service. At the end, spent costs can be monitored against the initial estimated investment once
Agile teams started to deliver those functionalities.

Figure 4.8: Cost estimation and decision making

After assessing work in the decision pipeline, it can be planned and published with the models and
services description in the service pipeline, so other development teams can access them. This task is
often done by a portfolio manager, who can see models and their linked efforts and the size of identified
services to plan for investment and dedicate resources.

4.2.4 The continuous learning

Adopting the proposed modelling and decision making approach for every development iteration and for
the various products allows to establish and maintain an up-to-date knowledge-base, which contains the

33

CHAPTER 4. APPROACH IMPLEMENTATION

models of already delivered business services and functionalities in previous releases, past spent efforts,
and references. The supporting knowledge can be fetched when designing new solutions to be compared
with required business functions and take reliable and cost-effective granularity decisions and evolve both
solutions and service assets to align with business and optimize costs.

As a result, having a continuously updating knowledge-base from combining Agile approach with
the proposed solution, makes the solution work as a self-learning feedback tool which helps development
teams to learn from past support and past design decisions when they take new decisions and estimate
costs, as well as for service portfolio management. To get feedback from the portfolio management
cycle to the development cycle in able to enhance decisions and mitigate future risks, raised issues and
customer feedback as well as the resulting increased costs and efforts from the monitoring process in
the portfolio management cycle should be reported by portfolio management staff. There must be a
standard process in place and dedicated participants to receive this feedback and maintain the rules in
the knowledge-base.

4.3 The rationale behind proposed implementation

Applying a hybrid service identification, classification, and modelling activities facilitate leveraging and
reusing existing assets and composite services that can contribute in delivering new solution. This way
local costs are optimized through reusability and future maintenance costs are reduced when solutions and
service assets evolve. In Agile, requirements are processed iteratively and are broken down and scoped
in backlogs to various teams. As a result, the available requirements already presume architectural
assets and implementation through that specific scope of knowledge. Therefore, different development
teams may model requirements and services in a way that doesn’t align with the capabilities of existing
assets and affect architecture evolvability and assets sustainability negatively. Even similar architects
and developers may lose the context between the time design decisions were taken in previous iterations
and current iteration.

Furthermore, reliable and up-to-date feedback enhances the cost estimation when designing new
solutions. Therefore, integrating proper granularity and cost estimation metrics is important to take cost-
effective decisions as well as to learn from past decisions and their impact on cost before implementing
new features and functionalities.

Use of existing systems and already delivered business services: In the context of legacy
and existing systems, extracting the natural composition of function units to realize business functions
in existing code and combining them with requirements in the design loop can support creating new
solutions from existing assets and reduce the cost of establishing the portfolio of services from envisioned
requirements.

On the other hand, without having an evolutionary overview of assets, modelling services with a
top-down process decomposition is not enough to maximize the reusability of existing code and services
and to take optimal granularity decisions for future. Therefore, leveraging already delivered business
services and asset and the variation analysis are essential for managing software lifecycle and optimize
costs. Also, teams can learn from each other and can avoid modularity choices that caused pain in the
past. Arranging teams around products can help them enhance decisions when performing the variation
and consolidation checks.

Modelling technique: For implementing the approach, we used a directed graph to model the com-
posite scope of functionality for a business service and functional requirements. This graph can show
a natural composition of business functionalities and allows for shared functionalities to be modelled
unlike feature trees proposed by Zhan et al [34]. It can be used next to functional documentation and as
an extra knowledge in the service catalog to show how functions are assembled from IT services. Visual-
izing functionalities support variation analysis and service modelling. Therefore, it speeds up leveraging
existing assets that were used in the past to assemble similar business functions and when migrating
different legacy systems to building blocks (SOA services). Furthermore, creating similar graphs at an
abstracting level allow business and marketing people to understand them and can help development
teams later in testing and interpreting customer feedback. They can also include external services and
COTS in a similar way. For companies starting with SOA and having legacy code, IDEs nowadays often
offer methods and call hierarchy overview and diagrams for existing methods.

34

CHAPTER 4. APPROACH IMPLEMENTATION

Classification: The business-domain-driven classification for both the functional scope and services
is inspired by SOMA way of identifying services in one SOA solution [3]. In our project, it offers
a better cohesion and proper abstraction that can enhance the coordination between the various IT
stakeholders working on different projects and speed up leveraging suitable assets. It also helps in
organizing small development teams around business domains or function areas, and assign dedicated
people for monitoring and managing a set of solutions and service portfolios. Finally, it eases the
alignment and reuse of IT services to create business services and solutions to customers in distinct
markets and business lines.

Continuous learning and knowledge management: Adopting our proposed approach with Agile
development adds the continuous learning and knowledge management dimension. This additional di-
mension, compared to existing service identification and modelling methods, connects Agile development
activities and modelling with service portfolio management through the knowledge management cycle
and the continuous learning. The shared knowledge and feedback between those two when solutions
evolve allows companies to sustain their solutions and service assets while having self-organized and
independent development teams. With existing approaches, this connection doesn’t exist, which doesn’t
allow for both service portfolio management and development processes deliver feedback to each other
effectively, to manage the evolution of service portfolios and mitigate future risks.

Observations and decision rules: Over time, decision rules can enhance the learning and maturity
of decisions in design loops and work as a lightweight decision logger and connect the design pipeline with
portfolio management through the analysis of issues and spent costs. The rationale behind proposing
rules and adding recommended actions and references is that required granularity decisions not specific
to one application in software companies [24, 37]. Also, in one application and with Agile incremental
development, they recur and they can be enhanced by analyzing past pain points to derive risks such as
increasing cycle time and development efforts, instead of increasing future solution re-engineering costs.
Moreover, observations in the context of service reuse in consideration with the reuse plan of a created
service can only be derived when this service is used in solutions while indicators such as the number of
customers using the service give undesired values.

Even in short customer feedback loops, when working on complex software products, losing context
between the time when decisions were taken in previous loops and new loops is common [6, 23]. Attempts
to have a shared context between stakeholders often focus on how to solve problems, rather than why it
was done and how to enhance it. Also, many of us join development teams and get access to loads of
documents & descriptions of components in the system and huge architecture diagrams that are hard to
revisit and to update periodically. Also, those don’t give a real explanation of what drove the decisions
and actions and how solutions evolved to avoid repeating mistakes.

4.4 Long term KPIs and impact of granularity decisions on
business

In the proposed approach, we integrate development cost metrics and monitor measured costs for de-
livered and new solutions. However, our decision framework allows to quickly integrate long term KPIs
which usually aim to measure the impact of short-term and already taken design decisions on the quality
of services offered to customers and business over time. Those indicators offer extra feedback by unde-
sired values to derive business and cost-related decision rules and maintain additional knowledge about
developed solutions and services. This additional knowledge offers an extra enhancement to the learning
process and design decisions in our framework.

Long term KPIs usually aim to encourage a win-win situation, in which benefits to both software
provider and customers are delivered. For instance, when investing in creating and expanding services
in a certain business domain or function area, the number of services reused in this domain and the
customer satisfaction through employing IT assets to deliver the desired business functionality can give
a good indication. Other KPIs can measure the number of business disruptions due to (IT) service
incidents, service downtime, or incident resolution time to check whether they comply to SLAs.

The service provider can decide which of those global measures are critical to business and assign
owners for the measurement and reporting activities. Automating the calculation of critical indicators
can guarantee a real-time impact analysis result and efficient reporting to relevant participants. However,

35

CHAPTER 4. APPROACH IMPLEMENTATION

the key is to not overdo it and to not prevent teams from working effectively and independently, delay
deliveries, and restrict innovation.

Since business functionalities are assembled from various SOA services of different technology, im-
proper boundaries between services can lead to a long service disruption for customers when one SOA
service need to be replaced due to requirements and technology change. It becomes also hard to assign
a KPI for certain services. Longer development cycles and time to introduce changes when software
evolves can also be good indicators for having bad design decisions.

In Table 4.1, we map common business and IT drivers for using SOA to deliver business value to
customers and measurable global KPIs that are relevant to service monitoring and management. Those
are derived from best practices in literature [12, 8, 28, 31] and are reviewed by Mr. I. Hooks partner and
director, and Mr. F. t. Beek quality and ISO manager at Stachanov.

36

CHAPTER 4. APPROACH IMPLEMENTATION
C
a
t
e
g
o
r
y

B
u
s
in

e
s
s
d
r
iv

e
r
s

IT
d
r
iv

e
r
s

K
P
I

F
in
a
n
c
ia
l
p
e
rs
p
e
c
ti
v
e

D
e
v
e
lo
p
m
e
n
t

c
o
st

re
d
u
c
ti
o
n

a
n
d

re
v
e
n
u
e
in
c
re
a
se

M
a
x
im

u
m

re
u
se

o
f
c
u
rr
e
n
t
IT

a
ss
e
ts
.
A
s-

se
ts

sh
o
u
ld

b
e

d
e
si
g
n
e
d

to
b
e
fl
e
x
ib
le

in
u
se
.
C
o
m
m
o
n

in
fo
rm

a
ti
o
n

a
n
d

m
e
ss
a
g
in
g

m
o
d
e
ls

sh
o
u
ld

b
e
d
e
fi
n
e
d

to
e
a
se

a
c
c
e
ss
i-

b
il
it
y
a
n
d

d
is
c
o
v
e
ra

b
il
it
y

1
.

P
e
rc
e
n
ta

g
e
o
f
c
u
st
o
m
e
rs

u
si
n
g
se
rv

ic
e

2
.

P
e
rc
e
n
ta

g
e
o
f
se
rv

ic
e
s
re
u
se
d

3
.

C
o
st

o
f
n
e
w

p
ro

c
e
ss

ro
ll
o
u
t

4
.

R
e
tu

rn
O
n

In
v
e
st
m
e
n
t
(R

O
I)

5
.

M
a
in
te
n
a
n
c
e
c
o
st

S
tr
a
te
g
ic

a
n
d
in
te
rn

a
l
p
ro

c
e
ss
e
s

p
e
rs
p
e
c
ti
v
e

S
u
rv

iv
in
g
c
o
m
p
e
ti
to

rs
p
re
ss
u
re

a
n
d

h
ig
h
e
r
b
u
si
n
e
ss

fl
e
x
ib
il
it
y

F
a
st
e
r

re
sp

o
n
se

to
b
u
si
n
e
ss

d
e
m
a
n
d
s

(b
u
si
n
e
ss

a
g
il
it
y
),

sp
e
n
d
in
g

m
o
re

ti
m
e

o
n

in
n
o
v
a
ti
o
n

ra
th

e
r

th
a
n

o
n

m
a
in
te
-

n
a
n
c
e
,
lo
w
e
r
ti
m
e
-t
o
-m

a
rk

e
t,

a
n
d
c
o
m
p
e
t-

it
iv
e

p
ri
c
e
s
th

ro
u
g
h

fl
e
x
ib
il
it
y

in
ch

a
n
g
e

a
n
d

u
se

1
.

P
e
rc
e
n
ta

g
e
o
f
c
u
st
o
m
e
rs

u
si
n
g
se
rv

ic
e

2
.

P
e
rc
e
n
ta

g
e
o
f
se
rv

ic
e
s
re
u
se
d

3
.

P
e
rc
e
n
ta

g
e
o
f
n
e
w

c
u
st
o
m
e
rs

o
v
e
r
a
p
e
-

ri
o
d

o
f
ti
m
e

4
.

R
e
so

lu
ti
o
n

ti
m
e
m
e
e
ti
n
g
S
L
A

&
b
re
a
ch

ra
te

5
.

T
im

e
-t
o
-m

a
rk

e
t

6
.

M
a
in
te
n
a
n
c
e
a
n
d

re
-e
n
g
in
e
e
ri
n
g
c
o
st

7
.

P
e
rc
e
n
ta

g
e
o
f
in
n
o
v
a
ti
v
e
id
e
a
s
a
n
d

e
x
-

p
e
ri
m
e
n
ts

in
n
e
w

m
a
rk

e
ts

C
u
st
o
m
e
r
a
n
d
se
rv

ic
e
le
v
e
l
p
e
r-

sp
e
c
ti
v
e

S
e
rv

ic
e
le
v
e
l
im

p
ro
v
e
m
e
n
t

Im
p
ro
v
e
d
se
rv

ic
e
d
e
li
v
e
ry
,
fa
st
e
r
re
sp

o
n
se

to
ch

a
n
g
e

a
n
d

fl
e
x
ib
il
it
y

in
ch

a
n
g
e
,
a
n
d

so
lu
ti
o
n

su
st
a
in
a
b
il
it
y

1
.

S
p
e
e
d

o
f

le
v
e
ra

g
in
g

in
fo
rm

a
ti
o
n

o
v
e
r

c
u
rr
e
n
t
a
ss
e
ts

2
.

R
e
so

lu
ti
o
n
ti
m
e
m
e
e
ti
n
g
S
L
A
s
&

b
re
a
ch

ra
te

3
.

A
p
p
li
c
a
ti
o
n

a
n
d

se
rv

ic
e
u
p
-t
im

e
:
n
u
m
-

b
e
r
o
f
b
u
si
n
e
ss

d
is
ru

p
ti
o
n
s
d
u
e
to

(I
T
)

se
rv

ic
e
in
c
id
e
n
ts

4
.

A
b
il
it
y

to
re
p
la
c
e

se
rv

ic
e
s
a
n
d

u
p
d
a
te

a
p
p
li
c
a
ti
o
n
s
(o
v
e
rn

ig
h
t)

w
it
h

m
in
im

u
m

in
te
rr
u
p
ti
o
n

to
c
u
st
o
m
e
rs

5
.

N
u
m
b
e
r
o
f
a
c
c
e
p
te
d

c
o
m
p
la
in
ts

a
b
o
u
t

se
rv

ic
e

6
.

C
u
st
o
m
e
r

sa
ti
sf
a
c
ti
o
n
/
fe
e
d
b
a
ck

(e
.g
.

N
P
S
)

7
.

P
e
rc
e
n
ta

g
e
o
f
lo
st

c
u
st
o
m
e
rs

P
a
rt
n
e
rs
h
ip

a
n
d

c
o
ll
a
b
o
ra

ti
o
n

p
e
rs
p
e
c
ti
v
e

S
e
a
m
le
ss

in
te
g
ra

ti
o
n
w
it
h
p
a
rt
-

n
e
rs

R
e
d
u
c
ti
o
n

in
in
te
g
ra

ti
o
n

ti
m
e

a
n
d

o
v
e
r-

h
e
a
d
,
a
n
d
th

e
a
b
il
it
y
in

le
v
e
ra

g
in
g
sh

a
re
d

IT
a
ss
e
ts

to
c
re
a
te

h
ig
h
-v
a
lu
e
a
ss
e
ts

1
.

N
u
m
b
e
r
o
r
p
e
rc
e
n
ta

g
e

o
f
b
u
si
n
e
ss

se
r-

v
ic
e
s
d
e
li
v
e
re
d
th

ro
u
g
h
in
te
g
ra

te
d
in
te
r-

n
a
l
a
n
d

e
x
te
rn

a
l
se
rv

ic
e
s

2
.

S
p
e
e
d

o
f

le
v
e
ra

g
in
g

in
fo
rm

a
ti
o
n

o
v
e
r

c
u
rr
e
n
t
a
ss
e
ts

3
.

T
im

e
/
c
o
st

to
in
te
g
ra

te
e
x
te
rn

a
l
se
rv

ic
e

K
n
o
w
le
d
g
e

m
a
n
a
g
e
m
e
n
t

a
n
d

IT
-B

u
si
n
e
ss

a
li
g
n
m
e
n
t
p
e
rs
p
e
c
-

ti
v
e
s

In
fo
rm

a
ti
o
n

o
v
e
rl
o
a
d

re
d
u
c
-

ti
o
n

a
n
d

su
p
p
o
rt
in
g
k
n
o
w
le
d
g
e

a
v
a
il
a
b
il
it
y

S
e
p
a
ra

ti
o
n

o
f
c
o
n
c
e
rn

th
ro

u
g
h

in
fo
rm

a
-

ti
o
n
d
is
tr
ib
u
ti
o
n
,
o
ff
e
ri
n
g
ri
g
h
t
k
n
o
w
le
d
g
e

to
IT

p
e
o
p
le

a
t
th

e
ri
g
h
t
m
o
m
e
n
t
to

m
a
k
e

d
e
c
is
io
n
s,

c
la
ss
if
y
in
g
a
n
d
m
o
d
e
li
n
g
IT

a
s-

se
ts

to
e
n
h
a
n
c
e

re
u
sa

b
il
it
y

a
n
d

re
d
u
c
e

m
is
ta

k
e
s
a
n
d

in
d
ir
e
c
t
d
u
p
li
c
a
ti
o
n

o
f
se
r-

v
ic
e
c
a
p
a
b
il
it
ie
s

1
.

S
p
e
e
d

o
f

le
v
e
ra

g
in
g

in
fo
rm

a
ti
o
n

o
v
e
r

c
u
rr
e
n
t
a
ss
e
ts

2
.

P
e
rc
e
n
ta

g
e
o
f
in
st
a
n
c
e
s
a
n
d
o
v
e
rl
a
p
p
in
g

se
rv

ic
e
s

3
.

P
e
rc
e
n
ta

g
e
o
f
se
rv

ic
e
s
to

b
e
re
fa
c
to

re
d

o
r
p
h
a
se
d

o
u
t

4
.

P
e
rc
e
n
ta

g
e

o
f
S
O
A

so
lu
ti
o
n
s
to

b
e

re
-

e
n
g
in
e
e
re
d

u
p
o
n

ch
a
n
g
e

5
.

A
v
e
ra

g
e
ti
m
e
u
n
ti
l
a
p
ro

b
le
m

is
id
e
n
ti
-

fi
e
d

6
.

C
u
st
o
m
e
r

sa
ti
sf
a
c
ti
o
n
/
fe
e
d
b
a
ck

(e
.g
.

N
P
S
)

T
a
b
le

4
.1
:
K
e
y
P
e
rf
o
rm

a
n
c
e
In

d
ic
a
to

rs
fo
r
se
rv

ic
e
p
o
rt
fo
li
o
m
a
n
a
g
e
m
e
n
t

37

Chapter 5

Case study

In this chapter, we first summarize the preliminary qualitative research at the host organization to
analyze the problem and gather enough information to apply the approach. Next, we demonstrate how
our proposed granularity decision making approach with a use-case at Stachanov.

5.1 Preliminary research at the host organization

The aim of those activities is to analyze the problem and collect enough arguments and evidences that
would either endorse or falsify the need for adopting SOA and having a supporting approach for managing
the evolution of service portfolios, as well as to collect initial requirements.

5.1.1 Interviews and group discussions

Interviews in a one-to-one setup and group discussions among the involved stakeholders were conducted
at Stachanov. This helped us gain an understanding of the application domain and problems and to
collect the important business objectives and stakeholders point of view and arguments.

Participants in interviews and group discussions were: software architect & developers, management
board members CEO/COO/CFO, and members in the operation team (See Table 5.1).

Role #

Software architect 2

Senior developer 5

Junior developer 2

Management board 2

Operation staff 2

Table 5.1: Interviewees

Open-ended questions in the one-to-one interviews, with follow up questions were used. Main ques-
tions were to seek situations in which developers had to solve a problem they ”believe” is due to the
current architecture and inflexibility of change, or had to re-implement a functionality for a different
customer rather than choosing to include it at the platform level. We also used follow up questions to
see how they believe such case can be avoided and whether their choices were driven by differences in
requirements and incremental receiving and processing of requirements, having a monolith architecture
and bounded time per development cycle. This was important, as some of those problems may also occur
due to developers discipline, tight-deadlines, lack of experience, and insufficient testing.

Moreover, focus groups were selected to hold group discussions which mainly focused on having the
management and business analysts with IT stakeholders in the discussion. The aim of those discussions
was to discuss the problems in depth in a language that is understandable by the management and see
how expressed problems by the various IT and business stakeholders in first interviews are holding the
business back. Such discussions revealed how organizational learning and knowledge transfer are taking
place at the company, the environment, and the culture.

After those interviews and discussions took place, classification of business objectives and issues were
identified and crosschecked to come up with the main business objectives and Stakeholders context at
the company. Furthermore, we identified the main challenges for adopting SOA and creating a set of

38

CHAPTER 5. CASE STUDY

services from current applications that can be base for future customers. The results of the analysis are
presented in the next section.

5.1.2 Results

Stakeholders context: In Table 5.2, we present the identified stakeholders in the studied case and
concerns

Furthermore, generally, there is good coordination, issues and tasks logging, and short daily meetings
between IT and business people to assign tasks and coordinate work.

Business dimensions: As a result of the preliminary discussions, a set of business objectives were
identified as follows:

∙ Increase reusability over re-implementation and growing size of software assets and applications

∙ Maintain sustainable assets

∙ Reduce time-to-market

∙ Reduce (SLAs) resolution time/meeting

∙ Gradual adoption of SOA and creation of services

∙ Taking advantage of already created applications in creating services and not wasting already
invested money

We also identified a set of initial business goals the management would like to achieve iteratively:

∙ Having pre-defined risk assessment and credit scoring services for helping banks mitigating risks of
granting loans and subsidies and to include them in bank simulation and training solutions as well

∙ Having generic financial model and calculations with standard functionalities

∙ Having generic supporting features from the platform as separate business services. This way they
can be patched and replaced separately due to the use of open-source plugins that needs regular
patching

Quality of services and portfolio management: Stachanov teams do a good job in logging work
and issues and classify them in their available jira system. They also have few processes for monitoring
service quality, managing SLAs, and reporting quarterly to some of their customers on application
availability, the number of incidents and SLA response times to incidents and change requests 1. They
hold daily morning meetings to discuss responsibilities and prioritize work. However, there is not many
efforts spent in documenting design decisions and a shared knowledge-base between IT and business
teams about existing solutions in banking and micro-finance sectors.

Challenges in establishing a service portfolio from legacy systems: There are various challenges
in identifying services from current applications and for SOA adoption. Those challenges are as follows:

∙ Lack of design & technical documentation for existing applications

∙ Lack of shared knowledge-base and categories for software assets and business functions to be
accessed when assembling new business applications

∙ Lack of modularity and interfaces in existing applications: monolith architecture

∙ Knowledge about the capabilities of current assets is owned by experienced developers and ar-
chitects. There is no clear overview of what business functionalities are valid to assemble new
solutions

∙ Many business functionalities are re-implemented in different code branches and applications as
part of application business logic according to developers

∙ The platform itself is forked and evolved with certain applications: sometimes merging back changes
to the trunk in subversion is delayed or never done. This is due to the short-term fixes rather than
maintaining suitable modularity for functionalities and setting dependencies on abstraction rather
than on evolvable code

Furthermore, existing resources are limited and should be used efficiently. Therefore, it is important
that the approach can support them in organizing IT and business people in an efficient way.

1https://iso.stachanov.com

39

CHAPTER 5. CASE STUDY

Stakeholder Details

Business owner (CEO, COO &
partners) and business analysts

1. The targeted market has certain standard business demands that can be
separated from banking variable lending policies and plans

2. Management usually takes the initiative and approach their customers with
new features and services in credit risk assessment and credit scoring do-
mains. Mainly, because banks are in need of such services and they don’t
have explicit requirements and an need expert opinion and expert solutions

3. Business agility becomes an issue as products evolve and more requirements
are delivered

4. The platform capabilities are already consumed to the max. Recently, there
are no standard business functionalities added that can be reused to cut on
development costs in new solutions, while the impression is that many would
have been done by developers to extend the set of services the platform can
offer

5. After few years of implementing web applications in the targeted market,
necessary patches and upgrades to critical components in applications for
Java versions and backend platform are delayed. This is due to the result-
ing size of current applications, whilst those applications have convergent
characteristics and features

6. The company is starting up a new branch in Africa to deliver loan origination
BPM solutions and risk assessment services to micro-credit banks there. It
would be beneficial to have pre-defined blocks to offer solutions to such
recently growing market. However, it is yet unclear how to reach there and
whether they can benefit from already developed applications and learned
lessons from current situation

Software architects and devel-
opers

1. As requirements change and applications grow, it becomes hard to fix bugs
and introduce change. Over time, refactoring and replacing plugins with
their integration code in one application to reuse certain business function-
alities for different features costs a lot of time due to the size of code. It
also needs careful testing as those applications are already in production and
components responsibilities are wide

2. Various developers work on projects of similar types with some developers
come and leave

3. No shared & standard knowledge-base exists for developers and also between
IT and business people

4. New team members find it difficult to understand which features are re-
curring and how to separate them so they can be reused. Moreover, the
big responsibilities of functionalities require teams, especially junior ones to
have a big context in their mind while working on a task and introducing
changes with no proper modelling for assets

5. No clear feature and component ownership exists, especially for generic fea-
tures that are coarse-grained and can be separated in the platform instead

6. They are aware of that some industry-standard features exist and that some
of them are re-implemented or included as part of custom features, due to
the changes in requirements and the various developers and interns working
on separate projects

7. According to senior developers and main platform architect, some of the ex-
isting functionalities can be decomposed into custom and agnostic function-
alities. The later can be abstracted and encapsulated to reduce dependencies
and enhance the reuse and changeability. However, when developing a new
solution, it costs less time to re-implement rather than analyzing existing
code written by others

Operation team

1. The team doesn’t contribute much in deploying applications. However, mem-
bers are responsible for hosting and patching operating systems and tools,
as well as setting up monitoring tools for performance and availability and
creating reports following the implemented ISO standard (9001, 14001)

Customers

1. Customers are not aware of the architecture and the size and modularity of
software components in their solutions. They care about the agreed business
services, which should meet their expectations and respond to their demands,
with the competitions out there that can offer such solutions

2. As software evolves, SLA response times for changes and fixes increase.
Adding features for extra loan product becomes slower, according to the
available quarterly reports and interviews with management

Table 5.2: Stakeholder context

5.2 Applying the approach

To demonstrate the approach, we selected two loan and financial services applications at Stachanov.
Those were used mainly for the bottom-up activities to extract and model precious assets that can fulfill

40

CHAPTER 5. CASE STUDY

management requirements in having a standard portfolio of financial and credit risk services, and identify
generic services from applications and the platform.

5.2.1 Business goals

The business goal is to offer credit risk and financial analysis services to banks and financial institutions
through multiple channels, including business process management solutions, banking simulation, train-
ing consumers, and other online service consumers to manage credit risks and orient clients to different
loan products.

5.2.2 Service identification and modelling decision making

5.2.2.1 Top-down: requirement analysis

Domain decomposition: First, we decomposed the loan underwriting domain based on various high-
level flows of activities for current customers and management view. To demonstrate the approach we
will take an example from ”Credit risk assessment” subdomain (function area). The complete list of the
identified functional area can be found in Appendix B.

Process decomposition: Second, for credit risk assessment process of a credit applicant, the subpro-
cess, namely high-level activity, ”Manage business risk” includes many business functionalities that are
offered to banks and financial institution to help them study the applicant business situation and miti-
gate risks of approving the loan. In this step, we consulted Mr. A. Koch2 from Stachanov to understand
all standard business functions that are needed to manage risks and have enough information to assess
the credit application. Table 5.3 shows the subprocess ”Manage business risk” and part of the required
business functions to satisfy the assessment.

Small Enterprise Applicant (SEA)

Manage business risk

1 analyze balance details

1.1 process balance assets

1.2 process liabilities

1.3 calculate equity

2 analyse business

2.1 manage profit and loss

2.1.1 calculate sales

2.1.2 calculate purchases

2.1.3 calculate expenses

3 score applicant with altman-z model

3.1 calculate business ratios

3.2 retrieve standard weights

3.3 calculate weighted score

4 evaluate guarantor

4.1 analyze physical collateral

4.2 analyze stock market value

Table 5.3: Decomposition of required business functions

5.2.2.2 Bottom-up: existing systems analysis and assets modelling

Since the company has no SOA services yet, there was a need to analyze the selected applications and
the platform itself to extract and classify potential business functions from existing code, so they can be
used to cut on costs and not waste the already invested money in the studied business domains. The
cases are as follows:

A small enterprise loan application Fin1

2Mr. Koch has more than 22 years experience in offering credit and financial risk assessment services, and giving training
course for bank agents: https://www.linkedin.com/in/andré-j-m-koch-60315562/

41

CHAPTER 5. CASE STUDY

Figure 5.1: Modeled functional scope

B small medium enterprise loan application DCB

The aim is to extract the function units that implement a business function and model their current
composition in the code, so they can be compared together and to the required business functions, before
identifying serviced and estimating cost.

Reverse engineering and code analysis: To be able to extract precious business functions from ex-
isting function units in delivered applications, we applied reverse engineering and code analysis activities
using MySQL workbench, INTELLIJ IDEA, and manual work, to both relational databases and source
code, to understand the boundaries between high-level components and between existing features and
to extract the list of Grails plugins that are also integrated. It revealed what utility and infrastructure
components are part of the platform and how they are used in existing applications.

To discard existing business logic and data entities that are not part of the business activities, we
collected existing BPMN files of the studied cases and we looked for similarities in workflow activity
naming and grouped them. We focused on business and credit risk analysis and evaluation activities.
To find the underlying functionalities of each activity, we looked into the implementations of Java tasks
listener that are triggered by events on the high-level activities (See Fig 5.2 and 5.3). Those revealed the
high-level business-functions in the call sequence, so invoked function units from the various existing Java
and Groovy services can be traced back until all fine-grained basic units. This has revealed the natural
composition to implement the identified business functions. To get an overview of the composition of
each high-level function, the method hierarchy option was used to get the list of all invoked units until
the fine-grained functions. While call hierarchy was used for each of the underlying units to spot whether
they are invoked to realize different business functions.

Figure 5.2: Event listener implementation

Figure 5.3: High-level logic in the event listener implementation

42

CHAPTER 5. CASE STUDY

All related Java and Groovy service and implementation files were grouped together to be compared
in one Grails package. Clone detection type 1 & type 2 with anonymized literals and data types was
used to spot redundancies in function units that are part of the natural decomposition of implemented
business functions to find shared code. For example, the calculations of the financial risk ratios were
found in various credit scoring, business analysis, and executive reporting functionalities.

On the other hand, we collected the domain classes that are used in similar functionalities and used
UML diagram in INTELLIJ to spot the dependencies for each application. In Grails, each Groovy
domain class ends up as a data table in the database. Therefore, we could add the data tables in MySQL
workbench in a reverse engineering model for each of the cases. This helped us to use the comparison
tool from MySQL workbench to see differences and analyze similarities in the model view. As a result

Figure 5.4: Clone detection

Figure 5.5: Call hierarchy

of those activities, we ended up with the various composition and underlying function units of similar
business functions in the two studied cases. Those are modeled using directed graphs to spot deviation
levels and come up with a final list business functions and units to realize them (See Fig 5.6).

Figure 5.6: Modelled assets

43

CHAPTER 5. CASE STUDY

A B

Manage business risk Manage business risk

1 analyze balance details

1.1 process balance assets

1.2 process liabilities

1.3 calculate equity

2 analyse business

2.1 calculate business ratios

2.2 check compliance with policy for product

2.3 check eligibility for credit transaction

2.4 analyze bank cashflow

2.4.1 process turnover

2.4.2 calculate sales

2.4.3 calculate difference

3 score applicant with altman-z model

3.1 retrieve standard weights

3.2 calculate business ratios and weighted score

1 analyze balance details

1.1 process balance assets

1.2 process liabilities

1.3 calculate equity

2 analyse business

2.1 calculate business ratios

2.2 manage profit and loss

2.2.1 calculate sales

2.2.2 calculate purchases

2.2.3 calculate expenses

3 evaluate guarantor

3.1 analyze physical collateral

3.2 check default probability

Table 5.4: Existing assets

5.2.2.3 Variation analysis

In this step, we first checked the duplication and variation levels in the existing business functions on
graphs in Fig 5.7. Next, we checked those graphs with the the graphs of the required scope of functionality

Figure 5.7: Similarities in existing functions

to look for existing assets that can be reused. For example, the functions f1, f3.1, and f4.1 are found
with a full match. However, for altman-z scoring f2.1 different composition is found (See Fig 5.8). At
this stage, we can draw the initial levels of granularity based on this analysis. At first, this will take into
consideration found assets (units) and the maximum coarse-grained for those that are not fully matching
(See Fig 5.9).

5.2.2.4 Service consolidation

After getting the initial levels, the functionalities f3.2, f3.3, and f4.2 are still required. To maximize
the reuse (f4.1), s6 can be created to implement f4.2. However, for the other two functions, the existing
altman-z implementation needs a refactoring. Based on our reverse engineering activities in the various
function areas, the ratios used for altman-z are standard in financial models and are re-implemented in
various business components, including financial analysis and training as well as in the extracted business
functions for cases A & B. Therefore, we create a separate service for them and refactor the existing
a3.1 and a3.2 to include the operation in one service s5. Altman-z is a standard credit scoring model to
predict whether an enterprise applying for a loan at a financial institution is of high risk of bankruptcy
and is highly standard. Ratios can be taken out and f3.2 & f3.3 are made as f3.2’. The refactoring
efforts are discussed in the next section.

On the other hand, there are two choices for realizing f2.1 (See Fig 5.10):

1. Either we create a coarse-grained service s2, which will implement a2.4;

2. Or we create three fine-grained services s2’, s2”, s2”’ to reuse the implementation of b.2.2.1 which
is the same as required f2.1.2.

44

CHAPTER 5. CASE STUDY

Figure 5.8: Variation in existing and required functions

Figure 5.9: Levels of granularity: variation analysis result

Figure 5.10: Service portfolio

5.2.2.5 Cost estimation

To size functions and services, we use so-called stachanov-point (stp), which is currently used by
Stachanov in Jira task-logging to size development tasks and functionalities. This helps us estimate
the size of new services to be implemented compared to the already implemented functionalities and
spent efforts. The other cost rates and constants values are shown in Table 5.5. The rates3 are provided
per 1 stp based on the average rate for median Stachanov developers: In Tables 5.6 & 5.7 we present
the sizing of both function units and identified services4. Given the refactoring size for s5 = 2 stp, we
present the values of the granularity and cost metrics in Tables 5.7 and 5.8. Now, we can calculate

3A rate can also be in man-hour instead of a monetary unit.
4Sizes of existing functionalities were derived from analyzing 120 entry in Jira time-tracking. In the future, this sizing

will be for SOA services instead.

45

CHAPTER 5. CASE STUDY

Current cost parameters

iRate iconst scRate scConst mRate exp

30e 25e 20e 10e 25e 1.20

Table 5.5: Input cost parameters

Function unit size

Function Size(stp) Function Size(stp) Function Size(stp) Function Size(stp)

f1.1 6 f2.1.1 6 f3.1 5 f4.1 8

f1.2 8 f2.1.2 6 f3.2 1 f4.2 4

f1.3 2 f2.1.3 6 f3.3 2

Composition size

f1 0 f2 2 f3 3 f4 3

High-level functions size

f1 16 f2, f2.1 20, 18 f3 11 f4 15

Table 5.6: Function sizing

Service S1 S2 S2’ S2” S2”’ S3 S4 S5 S6 Total

Services size 16 18 6 6 6 5 8 2 4 53 (opt1-2)

Granularity size-metric 0 0 0.66 0.66 0.66 0.63 0.66 0.38 0.33 -

Granularity scope-metric 0 0 1 1 1 1 1 1 1 -

Implementation cost opt1 25 25 0 0 0 25 25 30 * 21.20 30 * 41.20 327e

Implementation cost opt2 25 0 25 25 25 25 25 30 * 21.20 30 * 41.20 377e

Table 5.7: Service sizing and implementation cost

Composition Opt1: s2 (f2) Opt2: s2’, s2”, s2”’ (f2) s3, s5 (f3) s4, s6 (f4) Total

Service composition cost 20 * 21.20 + 10 20 * 21.20 + 10 31.20 20 * 31.20 + 10 282e

Table 5.8: Service composition cost

the total costs for the identified portfolio P for either options to implement f2.1 and expose it as a service.

Total costs for option1: TC(P) = 327 + 282 = 609e

Total costs for option2: TC(P) = 377 + 282 = 659e

If we don’t consider leveraging existing business functions and reusing implementation, one option is
to identify services at the high-level business functions, the costs are shown in Table 5.9.

High-level business function f1 f2 f3 f4 Total

Function size 16 20 11 15 62

Implementation cost 30 * 161.20 + 25 30 * 201.20 + 25 30 * 111.20 + 25 30 * 151.20 + 25 3330e

Table 5.9: Implementation cost: no use of existing code

5.2.2.6 Assessment and decision making

Since f2.1 is already implemented in case A, the cost of creating three separate services and orchestrating
them instead of creating one coarse-grained service s2 to do the task is higher. However, since all those
units already exist and f2.1.2 can implement another business function, the choice was for option2, so
services can be reused to assemble other potential business functions.

Beside that, for s1, s3 and s4, there is an avoided cost from reusing existing assets. Mainly because
the cost of exposing them as a service is much lower than the cost of creating a service and implementing
the functionalities from scratch for the solution.

At the end of the decision iteration, we have established modelled business functionalities as services
and list of services with their linked granularity values and costs. Of course, when the functional scope is
implemented, those costs will be logged in jira and can be used for future cost estimation in next decision
iteration and for monitoring the portfolio periodically. In current jira system among other options, there

46

CHAPTER 5. CASE STUDY

is already the possibility to add extra custom fields per ticket or release and configure it with numeric
formulas to calculate the actual cost in respect to the original estimated costs (See Fig 5.11).

Figure 5.11: Jira configuration

5.3 Repeating the application

We’ve demonstrated how the service identification and granularity decision approach works using a sim-
ple example from two delivered applications. Due to the nature of the business applications Stachanov
develops for customers in banking and micro-finance industry to automate similar procedures, we re-
peated the application of this approach on four different applications to extract potential services. We
started from the high-level business processes and BPMN models to extract distinct business activities.
Those were aggregated based on their activity and invoked java file names to be compared. For example,
for loan reimbursement activities, the decomposition of business functions was modelled in the four ap-
plications. The clone check revealed duplication but also differences mostly in the reimbursement plans
calculations and functionalities due to the custom nature of interest rate plans and standards of each
bank. To find proper boundaries between custom business logic and recurring logic with simple data
type exchanged, we had to perform manual code analysis, consult the original requirement documents,
conduct directed conversations with Stachanov staff due to the high complexity of the variations in
banking reimbursement policies and interest rate plans.

By decomposing business functions in the distinct function areas of the grouped activities, medium
and fine-grained functionalities were extracted that can be exposed as services or included as service
operations to extend interface granularity which can facilitate implementing them in the future and
having loose-coupled data models in service components. Some of the cases, the natural decomposition
needed to be adjusted to set proper boundaries based on clones and data entities analysis. This was also
due to the different coding patterns and variations in control flows. Some other cases were discarded as
no enough models were there to do a comparison and because of the high cost of refactoring and service
creation compared to the potential for reuse.

The extracted list of services list of extracted services from the platform and analyzed web applications
is presented in Appendix B. We also included the main observations from the reverse engineering and
code and variation analysis activities, which were reviewed by architects.

When developing SOA solutions, the more business services are assembled from service assets to
customers, the more models can be compared which helps in taking optimized granularity decisions for
maximizing reuse and assessing costs. It can also help in spotting problems and exploring potential
business services that can be assembled from those assets. This also helps when new requirements come
from customer to deconstruct part of a business service and combine other custom SOA services for the
solution.

47

CHAPTER 5. CASE STUDY

In Stachanov case, many delivered solutions include business functionalities for two or three different
loan product types in the same bank. However, since requirements were iteratively delivered over the
last two years and with no proper documentation or modelling for delivered functionalities and assigning
development tasks to different people, it was hard to take cost-efficient design decision and prevent the
damage to solution changeability and maintenance costs.

48

Chapter 6

Discussion

In this chapter, we connect all gained insights and We discuss how our developed solution is different
from existing approaches contribution. We also answer the main research question and discuss how the
approach can enhance decisions and coordination at the software company and enhance the alignment
of IT and business.

6.1 Novelty of the approach

Based on our systematic literature review, we didn’t find a service identification and modelling approach
that provides an evolutionary overview of assets and how those assets contribute to deliver business
value in already delivered solutions to enhance design decisions. Also, existing methods don’t connect
development activities and stakeholders with portfolio management activities and cost analysis in one
solution. Those are usually separate processes and loops, which makes it hard to send feedback to each
other in a seamless way and to not make bad design decisions for the sustainability of service portfolios.
Also, coordinating between the various IT teams and also portfolio staff and business stakeholders requires
extra efforts.

Development teams make daily design decisions based on available requirements to them and scoped
work in backlogs. They evolve solutions and implement new assets with the continuous development and
changes in requirements. Without an efficient leveraging to existing assets and without having proper
knowledge about assets business capabilities when modelling requirements and identifying services, teams
can take improper granularity decisions and create new services with low value while they increase future
maintenance costs and affect service portfolio sustainability negatively.

The developed approach adds the development cost dimension to the decision-making process by
integrating proper granularity and cost metrics in it. It also provides a shared modelling technique for
required functionalities and already delivered ones to speed up leveraging existing assets and assembled
business services in the design loop and take proper granularity decisions. This also allows learning from
past deliveries and other teams.

The novel dimension is the self-learning dimension, by maintaining an up-to-date knowledge-base
about developed assets, past efforts, and issues and success cases. Adopting our approach with the
continuous development and delivery in Agile projects allows Agile teams to introduce optimal granularity
decisions in consideration of development costs and the evolution of portfolios. Learning from past
problems can also enhance decisions and reduce risks. The knowledge-base with the self-learning connects
the monitoring and management of portfolios with Agile design activities. It continuously aligns software
solutions and created SOA services with business needs, so they serve targeted customers and markets
for a longer time, thus maintains higher sustainability for service portfolios. It also allows Agile teams to
develop granularity patterns over time which can solve similar domain problems. This offers an efficient
software lifecycle management solution to reduce risks, control costs, and maintain the profitability of
available services rather than expanding assets in inventories, which adds more complexity and requires
more efforts and resources to manage and optimize.

Development teams that can be organized around business domains and certain products can take
time and cost-effective design decisions. Therefore, they are encouraged to make changes and release
continuously and let the decision support process learn from its past support and their past mistakes
and success.

49

CHAPTER 6. DISCUSSION

6.2 Answering supporting research questions

i How to speed up leveraging existing assets and enhance the knowledge sharing across
teams?
Knowledge ownership and knowledge transfer are common problems, especially when various teams
are working on different complex projects, and with the different type of information available to
them. Strong cohesion and having a standard knowledge model for services assets can help develop-
ment teams to understand the capabilities of those assets and access them to introduce changes or
for reuse in implementing new business services and solutions. Therefore, it’s important to maintain
a standard description in service catalog and pipeline (planned services). Also, developing a shared
modelling technique for both requirements and existing assets as they are assembled from different
IT services and components can help development teams understand the business capabilities of
existing assets when leveraging them in design loops. This also enhances the alignment between
IT assets and business needs, which is essential for delivering suitable solutions to customers and
allowing development teams to work independently. On the other hand, having a standard service
catalog that describes features of business services helps business and marketing stakeholders do
their job efficiently as well as allows to discover new services and take decisions to phase services
out.

There is also the risk of people leaving the software company, which can be mitigated by enhanc-
ing the shared interpretation for the information about existing assets and delivered solutions and
having standard procedures to manage the portfolio. In this context, standards such as FitSM can
offer companies procedures and templates to manage offered business services and SLAs, and to
set proper process and clear process ownership to coordinate IT and business stakeholders around
delivering promised business solutions to customers. However, such standards should be comple-
mented with proper documentation for delivered services and manage replacement, changes, or
fixes to underlying IT services without increasing incidents and service downtime and decreasing
the reliability of releases

ii How to continuously update the service identification and modelling strategies during
the software lifecycle using the feedback from the portfolio evolution?
With the continuous delivery, service modelling and decision pipeline and portfolio management for
already deployed solutions and services should be connected so it can offer feedback to each other.
This also allows to take rationale decisions in the decision pipeline based on a broader context.
This can be achieved by having and maintaining an up-to-date and shared knowledge-base during
the evolution of the portfolio to give an evolutionary overview about assets and their past efforts,
along with suitable cost metrics to take cost-effective decisions. The knowledge-base which is con-
tinuously updating offers feedback to Agile teams over available assets that can be used to assemble
the solution in the pipeline and past costs from previous cycles. This allows them to enhance their
service identification and modelling strategies based on the current situation and take opportunities
to reuse existing capabilities and even stay content with the evolution of the product they work on
every iteration. The service and cost monitoring processes based on the maintained knowledge for
assets and efforts in the knowledge-base makes the portfolio management more efficient and in line
with the situation in the development pipeline. It also allows the portfolio management process
to offer reliable feedback about problems and costs to management and to Agile teams to improve
decisions and mitigate future risks. Therefore, the continuous learning and knowledge management
connect development cycle and portfolio management cycle together and offers elaborate feedback
to Agile teams automatically to update their strategies

iii How to optimize service granularity with consideration to development costs and port-
folio management?
Service granularity has more than the functionality as an important aspect. Other important as-
pects that can affect current and future costs are: coupling, genericity, flexibility, reusability as
is or through composability, sourcing, and complexity. The choice of service granularity directly
influences the ability for a service to be reused by various customers and combined with other
services to realize various functionalities. However, leveraging and interpreting available assets and
the ability to discover external services are key to maximize the reuse and reduce local develop-
ment costs, as well as sustain the portfolio and reduce management costs. Reusing coarse-grained
blocks to assemble a solution can be more beneficial in term of local costs. Building an SOA so-

50

CHAPTER 6. DISCUSSION

lution or a business service from coarse-grained services also reduces composition costs compared
to considering too many fine-grained services. Even though fine-grained services may offer a high
flexibility in use, they often perform at the technical level rather than offer a high business value.
Also, adding too many of those services to assemble a functionality may cause high complexity
when changes are needed and therefore adds more change efforts. In all cases, the decision pipeline
should consider an efficient method to estimate costs when comparing between granularity options
before considering implementing services and reusing or extending existing ones.

To optimize service granularity, reusing existing services to reduce local development costs is not
enough though. It is important when assets and portfolios evolve to engage the feedback from port-
folio management activities about issues and increasing costs in the decision pipeline to support
flexibility in change in both domain and technology as well as align solutions with customer needs
and enhance decisions. Also, this feedback is important when improper boundaries between ser-
vices are introduced, managing SLAs and assigning measurable KPIs to monitor deployed services
and costs become hard. Therefore, there should be always a balance between efficient development
cycles and the long-term impact of decisions on costs and sustainability. To achieve this balance,
development teams should be offered supporting knowledge about past work and proper modelling
and description of delivered assets to enhance reusability, but they also need to access information
about past issues and sensitivity points before considering certain levels of granularity and reuse of
assets. Also, when considering legacy systems, modelling services from those following their natural
composition in those systems may result in extra costs and increased complexity. It is important to
balance between reusing code as-is and optimizing future benefit and costs. Therefore, the ability
to use a reliable cost estimation model in the decision pipeline is important to compare available
options from an economic perspective. This is offered by having integrated indicators and efforts
knowledge in the knowledge-base in our proposed solution. Those don’t only support granularity
decisions, they also support the portfolio management cycle

6.3 Answering the main research question

How to effectively manage the evolution of the service portfolio in agile software develop-
ment?
A continuous alignment between business needs with IT assets is key for the success of any service
provider and for returning high revenue and satisfying customers.

With the continuous development and delivery in Agile practices, experience is not enough to maintain
a balance between development costs, efficient deliveries, and sustainability of service portfolios. Even
though self-organized development teams should be competent to take proper design decisions for the
product they develop. However, they receive requirements incrementally and have access to limited
information in backlogs. Over time and without having enough knowledge about already created solutions
and feedback from previous releases, design decisions that are taken every iteration can result in increased
size of service inventories and assets with higher maintenance cost and lower reusability, as well as
introduce different models and patterns in SOA solutions. Having too many assets is hard to manage
and can also lead to a higher change cost and service disruption to customers on technology changes.

In such incremental development methods, it is important to manage the evolution of the service
portfolio effectively and in the right direction to the market. Therefore, leveraging existing assets and
modelling them in a similar way as business requirements can better align those IT assets with business
needs and can help development teams learn from past deliveries as well as take proper design decisions
to reuse some existing assets to reduce development cost without introducing future costs and affect
portfolios negatively. Having proper knowledge-base in place with modelled assets and spent efforts
doesn’t only support Agile teams in taking proper and cost-effective granularity decisions, it connects
Agile development activities with portfolio management activities through the shared and up-to-date
knowledge, which allows learning from past to align assets with business needs and sustain portfolios.
With the bounded time and resources per sprint and customer pressure, having such a reliable overview
and cost estimation model when developing a new set of features is key to scope work and to not miss
deadlines. It also supports setting proper investment plans to create new services for future customers,
regardless of Agile projects.

When working on various IT complex solutions and with different Agile teams, knowledge sharing is
about setting proper knowledge models and coordination processes to manage knowledge at all levels and

51

CHAPTER 6. DISCUSSION

create learning processes and collaborative success. The best knowledge about the capabilities of assets
and pain points to avoid comes from already delivered solutions. With no proper knowledge models
and feedback from the evolution of the portfolio in place, maintaining a suitable service portfolio and
reducing maintenance and correction cost as well as staying competitive in the market become hard.

As a conclusion, to effectively manage the evolution of service portfolios with the continuous deliveries
and changes, mastery and having proper knowledge sharing approach for development pipeline and
portfolio management with lightweight service portfolio observers such as costs to offer feedback to
development cycles is important to continuously maintain suitable service assets for business and help
Agile teams work independently without lowering sustainability and increasing costs. This way, when
solutions evolve, the balance between development cost reduction, future maintenance costs, and service
portfolio sustainability can be maintained.

6.4 Conway’s law

Even though, Melvin Conway’s paper [7] was originally rejected by Harvard Business School due to the
lack of evidence on the formed hypothesis, yet his hypothesis became popular and was named Conway’s
law. This law states that:

”Any organization that designs a system (defined broadly) will inevitably produce a design whose struc-
ture is a copy of the organization’s communication structure.”

For the last few years, companies started to understand this relationship between the coordination and
organization of the development teams and the structure of the products they produce. This is the same
when developing SOA products and slicing functional requirements and identifying services. Companies
such as Netflix and Amazon structured themselves around small and independent Agile teams that can
manage own life cycle of the services they create with a great degree of autonomy. Such services with
their independent concerns can change and evolve separately from one another, resulting in the ability to
integrate and push changes to production much faster and revert them back if needed. It also promotes
continuous learning to integrate services due to the continuous delivery and feedback [22]. According
to Conway’s law, if those companies had adopted less and larger teams, the more monolithic systems
and coarse-grained services that are hard to maintain and or won’t be reused would have emerged,
which may not have given teams the same ability to adapt to change and experiment with customers.
While companies with too many small teams and with different attitudes and competency levels working
on similar products may produce a lot of fine-grained services that may overlap, which can increase
maintenance cost and complexity in term of responding to change and increase inventories size and
future costs.

If we take this law, a company which has a vertical organizational hierarchy, where IT teams receive
business needs iteratively in agile can evolve assets that don’t align well with business needs.

Therefore, for companies willing to give autonomy to their competent development teams, our solution
can support them in managing the evolution of their service portfolios by organizing their resources
around domain products and maintaining a proper knowledge modelling for available assets based on
their delivered business value and capabilities. This can help teams stay longer with such products and
enhance design decisions over time.

6.5 Promoting long-term decisions and collaboration

Software applications should be thought of as products or set of services that will live in production
and evolve for long time to fulfill customer needs. At the development team level, applications are
often looked at as projects or temporary tasks with a set of requirements rather than a long-lasting
set of services and next set of features and enhancement to fulfill those needs. This can promote more
short-term thinking and fixes and less business-oriented culture.

When having multiple development teams or developers working on various products, developers
should still be able to work independently and evolve solutions to stay reliable for a long time. Therefore,
they should be offered the means to efficiently enhance and reflect on design weaknesses and can also
help them learn from others and follow their success. This can also help when new team members or
junior developers come in. As a result, both the sustainability of SOA solutions and the service portfolio
can be maintained. This can reduce the accumulative costs from short-term solutions that may become

52

CHAPTER 6. DISCUSSION

costlier to pay as time goes on.

6.6 Software Architectural Erosion

Software architectural erosion is a common problem in Agile projects, which may cause higher mainte-
nance cost, component complexity, and erosion of quality attributes that are important to the software
company in meeting their SLAs with customers. Introducing new services with improper levels of granu-
larity or introducing changes to services that contradicts with the original goals of those with no proper
access to assets or evaluation of such decisions in long term can also lead to such erosion. In such case,
re-engineering or refactoring activities should take place to services and solutions, which is not a trivial
and error-free task, especially when the company has already adopted SOA for some time and many
services are already used in assembling solutions to existing customers.

Preventing such cases is less costly, which is often done by setting pattern monitoring and maintaining
up-to-date architecture documentation for development teams, as well as providing code and pattern
generation tools. Our methodology can work as an early erosion reversion tool to keep the architecture
of SOA solutions highly resilient to change, while it works as an erosion preventing tool in less complex
domain problems. It is important however to set dedicated resources and clear process ownership for
maintaining the knowledge-base.

6.7 Perfectionism pitfalls

Existing service modelling methods can be good for today’s needs. However, with the continual change
in requirements and with new products to be implemented in the development pipeline, the question
remands, shall we do it right or do it as soon as possible. How to find the balance between delivering
efficiently with creating and using services that don’t introduce future costs. This contradictory is always
a straggle by companies that provide services to customers, not only software companies. Perfectionism
can hurt as solutions of today don’t necessarily fit tomorrow’s problems. There is always something else
to tweak and trade-offs to make. The key is to continually maintain the balance between all factors
rather than taking too long to decide on how to move from requirements to services. The role of our
approach is to allow all stakeholders to take decisions quickly while enhancing their awareness of business
intends and assets capabilities and estimate costs. The cost metrics don’t only allow to estimate local
costs, they work as global observers in the service portfolio management solution which raise predictive
alerts for the company to maintain this balance. If long-term observers are introduced to the portfolio
management such as the suggested ones in Section 4.4, the key is to not overdo it and to set and balance
those observers, so productivity and innovation don’t decrease.

6.8 Threads to validity

Especially in the context of monitoring costs and for maintaining the modelled business services from
SOA services and service components in the catalog, the company should define clear procedures and
dedicated resources for those tasks. Keeping the description and models of existing assets up to date
speeds up leveraging to those to cut costs, but it also reduces risks of members absence and leaving.
Also, the portfolio management cycle may involve different resources to cover finance, risks, and customer
satisfaction aspects. Moreover, standard procedures should be defined to introduce changes to services
and to take services out of the catalog as part of the portfolio management cycle. The knowledge in our
knowledge-base becomes an input for those procedures and can accelerate them. However, the procedures
themselves should be reviewed periodically as well, to make sure that they are efficient enough.

53

Chapter 7

Support in different context

In this chapter, we discuss how this methodology can be used to support different concepts and ad-
vancements, such as Evolutionary Architecture and facilitates the experimentation in new markets and
with new technologies to transform market demands into real software products with approaches such
as HDD in a risk-aware manner.

7.1 Evolutionary Architecture

”An evolutionary architecture supports guided, incremental change as a first principle across multiple
dimensions.” [25].

The concept of EA aims to maintains changeable components and a good coupling between those
components to allow companies to evolve solutions on requirements changes and to experiment and revert
changes back without causing other parts of the solution to fail or causing high service disruptions to
customer. This is also important when there is a need to change the technology or upgrade a certain
platform.

With agile methods, when systems are changed and rolled out again and again, systems should still
be reliable, secure, and don’t break. Even though short feedback loops can guide teams in introducing
changes and help them learn from problems to enhance their decisions, Agile doesn’t guarantee both
business and software agility.

To guide teams in building a SOA solution architecture that is resilient to change and allow for
reverting changes with less pain, leveraging functionalities from previous cycles and understanding their
capabilities is essential. Also, the small decisions that are made over time must be looked at periodically
to see if they were good enough for software sustainability and the ability to evolve. Here comes the role
of the portfolio management and cost monitoring.

EA principle ”If it hurts, do it more often” needs to be enabled by having teams organized around
different products on which they can work for a longer time and learn from their continuous delivery
and feedback. The pain can however be reduced when speeding up leveraging assets and understanding
their business capabilities based on past releases. Our solution offers software companies a methodology
to enable and accelerate this learning process to reduce this pain and guide Agile teams in developing
an Evolutionary Architecture for SOA solutions.

7.2 Hypothesis-Driven Development

”The key outcome of an experimental approach is measurable evidence and learning”
When businesses have ideas for new services and solutions with a vision about the suitable capabilities,

it is hard to quickly create such services without iterative exploring different options and checking the
outcome based on market feedback. Hypothesis-Driven Development (HDD) is a practice which brings
the scientific method to the software development process, especially when the software company would
like to target new markets or business domains. Unlike markets in which the company has already
delivered many solutions to tackle domain problems, in this situation, there are a lot of risks and
uncertainties on how to reach such domains and how to develop services and evaluate their benefit.
Instead of being stuck with abstract practices and general recommendations, companies use HDD concept
to form hypotheses and perform experiments to test the hypotheses, which are expected to achieve a

54

CHAPTER 7. SUPPORT IN DIFFERENT CONTEXT

certain outcome for the end-user. Compared to TDD, HDD focuses on testing what the problem the
business is trying to solve before working on concrete solutions [1]. However, it is still a new concept
which needs an enabler approach.

Even though combining practices such as HDD and the continuous delivery allows companies to
amplify learning and accelerate experimentation in new markets, to innovate at low risk and cost, it is
important to be able to generate proper modular and revert changes to check other options and go with
small bets to market for each iteration. Using our approach with proper indicators allows companies to
push small business services to markets and observe how they are welcomed and whether they deliver
value before extending those services. It also allows them to learn from past success and help their IT
teams create those small bets and push them quickly to market to hear feedback and experiment with
other options if needed.

7.3 Complementing Lean in Agile development

The concept of lean management was first introduced by Toyota business to minimize the waste of
their manufacturing without sacrificing productivity. However, it soon became a complete philosophy of
management and thinking and yet design method that can be applied to any business and production
process, including software development. Lean is deemed to maximize customer value while minimizing
“waste”, or simply creating more value for customer with fewer resources, human efforts, time, or space.
A lean organization on the other hand aims to provide the highest value to customers by a perfect creation
process that has “ideally” zero waste, This sounds too optimistic though. To be close to achieving such
a goal, the organization should transform its thinking for optimizing separate assets, technologies, and
vertical departments to optimizing the flow of the organization products and shared assets. This requires
a complete transformation of how an organization conducts its business and a supportive approach achieve
those goals gradually.

Our proposed solution can help Agile teams to deliver faster and learn from the repeatable devel-
opment process to generate value and reduce errors. Therefore, if we look at lean principles in Agile
projects published by Meyer’s book [19], our solution contributes to the following principles:

∙ Reduce waste: discovering potential services for reuse over redundancies and extra services that
don’t deliver value to customers and increases complexity and costs

∙ Amplify learning and create knowledge: learning from experience is good, however, to make it more
effective, the shared knowledge models about past decisions, assets, and efforts can amplify learning.
The knowledge is gained usually by doing the work, not by seeking perfect solutions. Applying
our solution with the continuous development and delivery can make the learning process more
effective

∙ Deliver as fast as possible by managing flows and taking time-efficient design decisions

∙ Establish pulls: however, companies that spend time working Agile won’t necessarily reach assets
agility without considering an integrated architectural decision approach that promotes patterns,
standards, continuous assessment of assets and impact of work on business

∙ See the whole not the local: this is key for managing the evolution of service portfolios. Creating
services for each set of scoped features in backlogs without carefully analyzing the past and lever-
aging assets can result in creating services that have a negative impact on business in the long
term

55

Chapter 8

Conclusions and future work

8.1 Conclusions

To help software companies manage the evolution of their service portfolios in Agile development meth-
ods, we proposed a novel self-learning solution for effective service modelling and portfolio management.
The solution provides a knowledge-graph based modelling and analysis techniques of already delivered
business services and new required business functionalities in Agile development cycle to enhance the
reusability of existing assets and avoid increasing maintenance efforts and the size of service inventories.
It also integrates granularity and cost metrics and leveraging spent efforts from previous development
cycles in the decision pipeline to take cost-effective granularity decisions.

With the continuous development and delivery in Agile, leveraging delivered modelled assets as
services and past development efforts from the maintained knowledge-base in the development cycle and
monitoring spent efforts and modelled services in the same knowledge-base in the portfolio management
cycle make the proposed solution work as a self-learning design support tool for development teams
to take proper design decisions based on learning from past decisions and issues, which can enhance
the alignment of available IT assets in the portfolio and business needs. This self-learning dimension
allows for enhancing the maturity level of design choices over time and allows software companies to have
high business agility and maintain profitability in today’s challenging market and with the continuously
emerging technological advancements. Our approach, unlike existing approaches, connects the Agile
development cycle with the portfolio management cycle and allow them to give feedback to each other
efficiently for evolving the portfolio in the right direction for the market. Thanks to the shared knowledge-
base between those cycles that offers an up-to-date overview of costs and portfolio evolution.

8.2 Future work

A possible future direction would be to build the knowledge-base part which includes the directed knowl-
edge graphs over existing business services and functionalities using Artificial Intelligence (AI) capabili-
ties. This would allow us to use AI algorithms to automate the service identification and consolidation
steps on those graphs in the decision pipeline of new requirements. Similarities and variation levels can
be detected based on the distance between function units on graphs and labelling similarities to help
designers discover building blocks that can be reused in required business functions and avoid redundant
efforts. This also allows to reduce the manual work and speed up the decision making process.

Another research direction is to research the application of our solution in managing the evolution
of service portfolio for ENVRIplus project 1 [35]. The project aims to provide common solutions to the
shared challenges of various Environmental and Earth System Research Infrastructures (RIs) in their
efforts to deliver new services for science and society. It brings together existing projects and networks
with technical specialist partners to create a more coherent, interdisciplinary and interoperable cluster
of RIs across Europe. RIs usually offer datasets, and key platforms and tools to allow researchers to
eectively engage with the available data and their own scientific field and areas of specialty. ENVRIplus
has to host different RIs and should contribute to a multidisciplinary Earth system science across the
traditional scientific fields. Such cooperation will help avoid fragmentation and duplication of efforts and
make the European RI products easier to access. Our solution can help to develop a knowledge-base

1ENVRIplus Service Portfolio: https://wiki.envri.eu/display/EC/ENVRIplus+Service+Portfolios

56

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

with common semantic to offer access to information about research design and data resources that are
made available by one of ENVRI community contributors. The knowledge-base can map environmental
RIs and their technologies, and support comparison and analysis of RI designs to avoid duplication of
efforts and enhance the discovery of data and tools. In this regard, the decision making concerns the data
granularity, namely, the size of data of each node in the knowledge-graph that should be transferred to
other nodes. The sizing metric should measure the data size while the cost metric can be replaced by a
suitable metric to measure the transfer time of the data between different nodes. Those two indicators can
help designers take proper decisions to use such resources and avoid causing an inadequate performance.

57

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Dr. Zhao for the continuous
support of my research and thesis writing, for his motivation, patience, and immense knowledge. His
guidance helped me in all the time of the research. I could not have imagined having a better advisor
for this research project.

Besides my supervisor, I would like to thank the rest of the masters committee, for their encour-
agement and insightful comments during my study. I would also like to express my sincere gratitude
to Stachanov staff, for giving me the opportunity to conduct my research project at their office in
Amsterdam and for motivating me during my research.

Last but not the least, I’m thankful for my family in Paris for supporting me spiritually throughout
writing my thesis and for their understanding for the busy time I’ve had which prevented me from being
there for important family moments, and for my best friend Noucha for the warm support.

58

Bibliography

[1] How to implement hypothesis-driven development. https://www.thoughtworks.com/insights/

blog/how-implement-hypothesis-driven-development, 2014.

[2] S. Overhage A. Albani and D. Birkmeier. Towards a systematic method for identifying business
components. Component-Based Software Engineering. CBSE 2008. Lecture Notes in Computer
Science, 5282:262–277, 2008.

[3] A. Allam T. Abdollah S. Ganapathy A. Arsanjani, S. Ghosh and K. Holley. Soma: A method for
developing service-oriented solutions. IBM Systems Journal, 47:377–396, 2008.

[4] G. Aagesen and J. Krogstie. Bpmn 2.0 for modeling business processes. Handbook on Business
Process Management 1: Introduction, Methods, and Information Systems, pages 219–250, 2015.

[5] D. Budgen P. Brereton M. Turner M. Niazi B. Kitchenham, R. Pretorius and S. Linkman. Systematic
literature reviews in software engineering – a tertiary study. Information and Software Technology,
52:792–805, 2010.

[6] J. Bloomberg and R. Schmelzer. The Agile Architecture Revolution: How Cloud Computing, Rest-
Based SOA, and Mobile Computing are Changing Enterprise IT. John Wiley & Sons, 2013.

[7] M. Conway. How do committees invent. 1967.

[8] F.Schlosser D. Beimborn, N.Joachim and B.Streicher. The role of it/business alignment for achieving
soa business value - proposing a research model. 2009.

[9] R. Daigneau. Service design patterns: Fundamental design solutions for soap/wsdl and restful web
services. 2011.

[10] N. Çizmeli E. Ungan and O. Demirörs. Comparison of functional size based estimation and story
points, based on effort estimation effectiveness in scrum projects. 2014 40th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pages 77–80, 2014.

[11] T. G. J. Schepers et al. A lifecycle approach to soa governance. proceedings of the 2008 acm
symposium on applied computing. pages 1055–1061, 2008.

[12] M. FLYNN. Fit, lightweight and lean - fitsm, 2018.

[13] J. Geetha and T. Karthikeyan. A tool for measuring soa service granularity. 2012.

[14] J. Miller J. Arnold J. Cardoso, A. Sheth and K. Kochut. Quality of service for workflows and
web service processes. Web Semantics: Science, Services and Agents on the World Wide Web,
1(3):281–308, 2004.

[15] R. Heckel J. Hausmann and M. Lohmann. Model-based discovery of web services. pages 324– 331,
2004.

[16] Y. Wu J. Jiang and G. Yang. Making service granularity right: An assistant approach based on
business process analysis. 2011 Sixth Annual Chinagrid Conference, pages 204–210, 2011.

[17] J. Qiao J. Liu, Z. Yu Xu and S. Lin. A defect prediction model for software based on service oriented
architecture using expert cocomo. 2009 Chinese Control and Decision Conference, pages 2591–2594,
2009.

59

https://www.thoughtworks.com/insights/blog/how-implement-hypothesis-driven-development
https://www.thoughtworks.com/insights/blog/how-implement-hypothesis-driven-development

[18] P. Kumar and R. Gupta. Dependency modeling of a soa based system through colored petri nets.
Journal of Computing and Information Technology, 24:253–269, 2016.

[19] B. Meyer. . Agile!: The Good, the Hype and the Ugly. Springer; 2014 edition, 2014.

[20] Henry Mintzberg. Einführung unsere organisationswelt. 1991.

[21] V. Dwivedi N. Kulkarni. The role of service granularity in a successful soa realization a case study.
2008 IEEE Congress on Services - Part I, pages 423–430, 2008.

[22] S. Newman. Demystifying conway’s law. https://www.thoughtworks.com/insights/blog/

demystifying-conways-law, 2014.

[23] H. Koziolek O. Zimmermann, L. Wegmann and T. Goldschmidt. Architectural decision guidance
across projects - problem space modeling, decision backlog management and cloud computing knowl-
edge. 2015 12th Working IEEE/IFIP Conference on Software Architecture, pages 85–94, 2015.

[24] J. Koehler o. Zimmermann and F. Leymann. Architectural decision models as micro-methodology
for service-oriented analysis and design. In SEMSOA Workshop, Hannover, Germany, 2007.

[25] R. Parsons P. Kua and N. Ford. Building Evolutionary Architectures. O’Reilly Media, Inc., 2017.

[26] P. Reldin and P. Sundling. Explaining soa service granularity. https://www.diva-portal.org/

smash/get/diva2:23243/FULLTEXT01.pdf, 2007.

[27] L. Santillo. Seizing and sizing soa applications with cosmic function points. 2007.

[28] S.Izza and R.Imache. An approach to achieve it agility by combining soa with itsm. IJITM, 9:423–
445, 2010.

[29] C. Steghuis. Service Granularity in SOA Projects: A Trade-off Analysis. PhD thesis, Business
Information Technology, University of Twente, 2006.

[30] B. Tansey and E. Stroulia. Valuating software service development: Integrating cocomo ii and real
options theory. 2007 First International Workshop on the Economics of Software and Computation,
pages 8–8, 2007.

[31] S. Watts. Itsm metrics kpi’s for measuring success, 2017.

[32] WikiPedia Editors. Service oriented architecture. https://en.wikipedia.org/wiki/

Service-oriented_architecture, 2019.

[33] G. Duysters Z. Li and V. Gilsing. The effect of knowledge decomposability on technological explo-
ration in technological acquisitions. Academy of Management Proceedings, 2016:15882, 2016.

[34] D-c. Zhan Z. Wang and X. Xu. Stcim: a dynamic granularity oriented and stability based component
identification method. ACM SIGSOFT Software Engineering Notes, 31:1–14, 2006.

[35] P. Martin Z. Zhao and B. Magagna. A definition of the envriplus semantic linking framework
at conceptual and formal levels. http://www.envriplus.eu/wp-content/uploads/2015/08/D5.

3-A-definition-of-the-ENVRIPLUS-Semantic-linking-framework-at-conceptual-and-formal-levels.

pdf, 2018.

[36] L. Zhengyu. Essays on knowledge sourcing and technological capability : A knowledge structure
perspective. Other publications tisem, Tilburg University, School of Economics and Management,
2016.

[37] O. Zimmermann. Architectural decision identification in architectural patterns. In WICSA/ECSA
Companion Volume, 2012.

60

https://www.thoughtworks.com/insights/blog/demystifying-conways-law
https://www.thoughtworks.com/insights/blog/demystifying-conways-law
https://www.diva-portal.org/smash/get/diva2:23243/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:23243/FULLTEXT01.pdf
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.envriplus.eu/wp-content/uploads/2015/08/D5.3-A-definition-of-the-ENVRIPLUS-Semantic-linking-framework-at-conceptual-and-formal-levels.pdf
http://www.envriplus.eu/wp-content/uploads/2015/08/D5.3-A-definition-of-the-ENVRIPLUS-Semantic-linking-framework-at-conceptual-and-formal-levels.pdf
http://www.envriplus.eu/wp-content/uploads/2015/08/D5.3-A-definition-of-the-ENVRIPLUS-Semantic-linking-framework-at-conceptual-and-formal-levels.pdf

Acronyms

SOA Service Oriented Architecture

ITSM IT Service Management

BPM Business Process Management

BPMN Business Process Model and Notation

HDD Hypothesis-Driven Development

DDD Domain-Driven Design

SLAs Service-Level Agreements

ROI Return On Investment

KPIs Key Performance Indicators

COTS Commercial off-the-shelf

NPS Net Promoter Score

SoC Separation of Concerns

UML Unified Modeling Language

WSDL Web Services Description Language

IDL Interactive Data Language

FDG Function Dependency Graph

SLOC Source Lines Of Code

EAF Estimated Adjustment Factor

EAFs Estimated Adjustment Factors

TDD Test-Driven Development

SDLC Software Development Life Cycle

DRY Don’t Repeat Yourself

RIs Research Infrastructures

e-VRE e-Infrastructures for Virtual Research Environments

AI Artificial Intelligence

EA Evolutionary Architecture

61

Appendix A

Stachanov background and studied
case

A.1 Business process management and business tasks

A business process is a set of structured and ordered business activities and tasks to fulfill certain goals.
To develop and deliver a solution which enhances and automates business processes of a customer,

software companies usually capture the various business activities the customer perform and their flow
and organize and model them, then implement the underlying functionalities required in each activity.
This allows the customer to work efficiently and transparently and reduce the amount of work required
by automating simple tasks that may take valuable resources. Business process management solutions
on the other hand usually automate the process from end-to-end.

Such a business process can be the procedure to process and grant a loan to applicant in the bank
(see Fig A.1). The process includes activities and business functionalities related to processing the loan,
taking decisions by various roles at the bank, generating contracts, and the various calculations and risk
assessment algorithms. Automating such a procedure in a software solution allows every participating
bank officer in it to work towards the end goal which is granting or rejecting the loan to the client in a
pre-defined and structured way, take decisions when necessary, and check the status of the application
and the historical actions on it.

Figure A.1: High-level business process model for loan underwriting

62

A.2 Stachanov studied case

Since its foundation in 1997, Stachanov has been committed to assist its global clients in the rapidly
expanding field of information technology and financial modeling techniques. Among others, Stachanov
builds and delivers innovative and cost-effective business process management solutions to its global
customers.

The company develops various web solutions to companies in the financial and banking sectors,
such as automating business processes, assessing credit risk, and other banking simulation & training
products. One of the most important platforms for business is an in-house BPM platform (so-called
ARGOS 2.0). ARGOS helps the development team in developing web-applications to their customers. It
currently works as set of functionalities that can offer developers utilities to rapidly build screens, include
a complete workflow support to allow end-users take rapid decisions in the automated procedures and
business processes, generate reports and manage user permissions on various levels such as pages and
workflow tasks. The platform is a very powerful support tool to reduce time-to-market through the
rapidly built screens, page and task authorities, and the workflow support.

Besides the platform itself which is a set of supporting functionalities for having the basic function-
alities for a BPM web application, the company builds those web applications on demand to automate
and manage loan and subsidy granting and repayment business processes for banks and financial entities,
including managing related data, calculations and financial analysis, and modeling the overall business
process. Those solutions allow banks to process loan applications and perform the flow of work in al-
most paperless, efficient and transparent way. This is very important for banks, so they can reduce the
risks coming with granting loans and funding projects and start-ups through controlling and having a
clear overview of all actions in the loan underwriting procedure for every single applicant, benefit from
risk assessment and analysis functionalities with much less resources, and monitor the efficiency of the
procedure itself.

A credit underwriting procedure usually includes many business activities and functionalities, involv-
ing various departments and stakeholders in the bank. It usually start from loan applicant intake and
ends by disbursing approved loan amount or end of reimbursement and delinquency management. The
process includes among others:

∙ Eligibility and pre-qualification checks in respect to applicant personal information and banking
policies

∙ Application verification for application’s correctness and completeness

∙ Risk analysis: risk and credit scoring based on standard or own scoring models at the bank. It can
include trained credit scoring models from historical granted loans

∙ Financial analysis: current employment, bank statements, tax return, collateral, assets, history
repayment behavior for existing customers

∙ Business activities analysis: balance, sales, purchases, expenses, cashflows, liabilities and equity,
visiting business location

∙ Guarantees and insurance: guarantor business analysis and agreements

∙ Fraud detection algorithms

∙ Decisions and approvals: at various levels in the process

∙ Agreements and disbursement: preparing proposal, various calculations for reimbursement and
repayment plans, monthly installment

∙ Document generation, reporting and statistics

∙ Operations with central banking systems and other subsystems

The detailed activities and underlying functionalities in each business task may vary from one loan
product or loan plan to another in the bank, and from one bank to another. Each bank has a set of
policies and loan packages to offer to its clients. Some products are directed towards small and medium
enterprises, while others are individual loans, for personal or business use. There are also loan products
that target groups to start a new business.

Stachanov capture the various activities in the business process and policies to refine them and
construct a flow of activities and develop the required underlying functionalities and decision rules.
As a result, stachanov delivers a web-application that allows end-users at the bank to use all types of
business functionalities and calculations and complete their work efficiently. This also includes integrating
outsourced services and banking services in the solution. On the other hand, Stachanov offer some of those
functionalities and services separately or as part of banking simulation and risk assessment applications.

63

https://www.stachanov.com/index.php/en/
https://www.stachanov.com/index.php/en/argos-credit-assessment

A.2.1 Used technology

In the following list, we give an overview of the main technology used in the current application landscape,
including the main platform.

∙ Java: Java SE 7

∙ Grails: 2 (in 95% of the cases 2.4.4)

∙ IDE: GGTS 3.6.4.RELEASE with the platform Eclipse Luna SR1 (4.4.2) and groovy eclipse plugins

∙ Groovy compiler: 2.3.10, to compile both Groovy code and Groovy Servers Pages (GSP) code for
”views”. GSP is very similar to ASP and JSP, but far more flexible and intuitive

∙ Workflow engine: Grails Activiti plugin 5.22.0

∙ Workflow modelling: Activiti Eclipse BPMN 2.0 Designer

∙ Database engine: MySQL 5.7

∙ Spring security core: 2.0

∙ SOAP Webservice consumers: Grails CXF client plugin 2.1.2, which uses Apache CXF

∙ JavaScript

∙ JQuery: 1.11.1

∙ CSS

64

Appendix B

Application result in Stachanov case

B.1 Data model for demonstrated case

Fig B.1 shows the data entities and data hierarchy for the demonstrated case, subprocesses ”Manage
business risk”.

Figure B.1: Demonstration case data model

B.2 Candidate services for targeted market

Table B.1 shows the extracted subdomains and identified services as a result of reverse engineering the
platform and the backend of the studied web applications.

B.3 Observations from reverse engineering and variation anal-
ysis

As a result of our reverse engineering and variation analysis activities, we extracted a list of main
observations which can help Stachanov development teams in future design loops. Table B.2 presents
this list.

65

Subdomain Services

Standard credit scoring (trained
models defaultera)

1. Calculate Bayesian score service

2. Calculate logistic regression service

3. Calculate expert score service: set weighs, retrieve weights, score
applicant

Fraud detection 1. Benford detection service

Automatic notification (generic)

1. Mail service: send mail, configure mail server, get service con-
figuration

2. SMS service: send sms, set sms parameters, get sms parameters

Credit risk assessment

1. Calculate Altman-z scoring service

2. Process historical cashflow service

3. Process projected cashflow service

4. Calculate business ratios service

5. Analyze collateral service: analyze movable collateral, analyze
inmovable collateral

6. Analyze bank cashflow service

7. Analyze income statement service

Workflow support (generic)

1. Process definitions service: add definition, delete definition, up-
date definition, get definition by internal name, get list of can-
didate roles (task permission list), generate png diagram by in-
ternal name

2. Process instance service (ACTIVITI engine integration): add pro-
cess instance, terminate process instance, get active tasks, get
historical tasks, register decision, rollback decision, set assignee
for task, get assignee task, delegate task, check deadline for task

Document generation and manage-
ment (generic)

1. Generate pdf document service (Open-sagres xml binding plugin)

2. Generate docx document service (Docx4J xml binding plugin)

3. Manage documents service: check document is uploaded, delete
document by business-object-id and domain-class-name

Logging and audit (supporting)

1. User action logger service: enable monitoring, log request, log
response, create user request log, create log output string, map
parameters for logging, retrieve session

Standard loan applicationb

1. Manage loan application data service: add loan application,
delete loan application, get and set for: requested amount, re-
quested term, goal, application date, contract date, first repay-
ment date, contract end date, approved amount, and approved
term

Customer management

1. Personal information service: add customer, delete customer, up-
date attribute..

2. Initial eligibility check service

3. Family composition service: add family member, delete family
member, update attribute, add family expenses, delete family
expenses, update expense record, calculate total family expenses

Table B.1: Candidate service portfolio

aA defaulter is somebody who fails to meet the legal obligations of a loan after it is granted. There are various scoring
solutions that use continuously trained models from data of already disbursed loans to predict default probability in new
loan applications, based on list of weighted attributes such as applicant age, gender, income, marital status, and number
of years in business.

bCurrently, a standard loan application logic and entity are encapsulated and found to manage the basic loan application
data in existing systems. Managing the variable logic and data related to loan application is separated.

66

Observation Problem Reviewed by

Client registration and man-
agement functionalities as well
as applicant management data
model are added for different
loan products and two different
banks in one country

Loan applicant management should not be tight to
certain loan product type, so it can be reused for
different types within a bank or banks of one region
or country

D. Morschhausen

Credit and business risk ratios
as part of generic scoring mod-
els and custom financial models

There are many ratio algorithms and calcula-
tions, which are mostly standards and are also re-
implemented as part of other business functionali-
ties, such as banking simulation and business analy-
sis activities as well as for group loans. They are also
added to credit analysis and credit reporting services
for different loan products (Small Enterprise, Indi-
vidual, Group loan, Personal mortgages)

A. Koch

Some credit scoring models are
highly standard and generic,
but they are implemented in
different applications

A model cannot be reused in new SOA application
and it should be re-implemented. Therefore, they
were included as separate coarse-grained services

A. Koch

Interest rate plans are part
of reimbursement management
functionalities

Interest rate plans vary between banks and within
one bank. They should be included as separate cus-
tom services for SOA solutions, while reimbursement
management functionalities can be reused across dif-
ferent loan products and banks as they can be or-
chestrated with interest rate services to use approved
interest rate and the various amounts

F. ter Beek

Reimbursement management
functionalities, including reim-
bursement plan generation are
implemented in all cases

Similar to the above. If interest rate plans logic and
data model are separated, new services can be cre-
ated to be reused to assemble similar functionali-
ties for various loan products and different banks.
Also, re-implementing certain operations in reim-
bursement services (if needed) will be easier and less
costly

F. ter Beek, D.
Morschhausen

Automatic notification func-
tionalities are implemented
multiple times and they are
rather generic

Replacing integrated plugins will result into the need
to change the integration code in various applica-
tions

F. ter Beek

Different versions of COTS and
plugins in different applications

No present reason for those variations. Possibly due
to different developers working on different prod-
ucts. This makes it hard to patch and manage

F. ter Beek, D.
Morschhausen

Table B.2: List of observations in Stachanov studied case

67

	Introduction
	Background
	Service Oriented Architecture (SOA)
	Service lifecycle and portfolio management

	Motivating problem and an example business case
	Research project details
	Outline

	State of the art and related work
	Systematic literature review and analysis
	Service granularity and service identification and modelling
	Modelling techniques
	Service granularity and costs
	Cost estimation methods
	Risk mitigation
	Assets sustainability and Evolutionary Architecture
	Service Portfolio Management

	Literature gaps analysis

	Granularity decisions based on software development and portfolio evolution
	A general idea
	Detailed explanation of cycles
	Software development cycle in Agile development
	Portfolio management
	Knowledge management

	Interactions between lifecycles through the knowledge-base

	Approach implementation
	Related definitions
	Business functions classification
	Modelling technique

	Approach implementation
	From requirements and existing systems to modelled services
	Granularity and cost estimation metrics
	Service portfolio decision model
	The continuous learning

	The rationale behind proposed implementation
	Long term KPIs and impact of granularity decisions on business

	Case study
	Preliminary research at the host organization
	Interviews and group discussions
	Results

	Applying the approach
	Business goals
	Service identification and modelling decision making

	Repeating the application

	Discussion
	Novelty of the approach
	Answering supporting research questions
	Answering the main research question
	Conway’s law
	Promoting long-term decisions and collaboration
	Software Architectural Erosion
	Perfectionism pitfalls
	Threads to validity

	Support in different context
	Evolutionary Architecture
	Hypothesis-Driven Development
	Complementing Lean in Agile development

	Conclusions and future work
	Conclusions
	Future work

	Acronyms
	Appendix Stachanov background and studied case
	Business process management and business tasks
	Stachanov studied case
	Used technology

	Appendix Application result in Stachanov case
	Data model for demonstrated case
	Candidate services for targeted market
	Observations from reverse engineering and variation analysis

