
Designing filters for ELK

Rocco Gagliardi
Defense Department, scip AG

roga@scip.ch
https://www.scip.ch

Marc Ruef (Editor)
Research Department, scip AG

maru@scip.ch
https://www.scip.ch

Keywords: Complexity, Dashboard, Firewall, Kibana, Policy, Report, Tool, Windows

1. Preface

This paper was written in 2014 as part of a research project
at scip AG, Switzerland. It was initially published online at
https://www.scip.ch/en/?labs.20141023 and is available in
English and German. Providing our clients with innovative
research for the information technology of the future is an
essential part of our company culture.

2. Introduction

Log messages are generated on many system components
and applications on systems itself.

In many cases, the documentation does not exist or is very
superficial. In order to make sense of this mass of
information, applying calculations and making predictions
is very complex.

This lab summarises experiences collected during the
design and implementation of some ELK [1] at various
customer sites.

3. Problem

Interpreting a log file means to extract the information we
need and ignore the rest.

In data transferred via syslog, the field data has no strictly
predefined format, and can also contain any data type in
any order. There are about 1000 different log formats out
there at the moment. Each application logs specific
information in proprietary formats; sometimes the same
application even uses different formats for different events.

Time is needed to create filters so that received data is
interpreted in a structured and coherent way. In addition to
that, with increasing amounts of log interpretation, the
system becomes complex and prone to errors.

4. Practical Model Solution

To effectively and efficiently manage the filters, a good
dose of flexibility and robustness is necessary. It is not
merely a matter of programming. To obtain an effective
system, accurate documentation is required of how data
flows and how each filter modifies the original message.

4.1. Filter Organisation

It’s a good idea to split the filter across different files:

Series Filter Comment

10_* Input
Definition

Here we find the definitions of
all the input, such as syslog /
lumberjack / file / other.

20_* Input
Classification

To boot, it is necessary to
classify the messages. Matching
regex, specific sources or
programs and so on can be used
to uniquely tag each message
for further manipulation.

30_* Message
Interpretation

Based on the tags entered
earlier, the message goes
through the various filters and
will be analysed by the ones
deputed to handle the specific
tag. Extracted fields are to be
indexed and, if necessary,
modified in different manners
(e.g. normalization of the names
of the extracted fields). Even if
multiple mechanisms can be
used to extract information from
a message, the most useful tool
is grok as mentioned in
Interpreting a Log file with
Grok [2].

90_* Data Output The analysis is complete, Now
it is decided what to do with the
data. For example, send the
measurements to Carbon or save
only a few messages or
messages fields, etc.

For each analysis filter, develop a matrix of extracted fields
and contents in order to normalise the field names. This
will be a useful reference during the design of the
dashboards and/or reports as well as for the correlation
between different message types.

Separate filter details from filter configuration. The grok-
filter (analysis) itself should just match a line against

http://www.elasticsearch.org/overview/
http://www.scip.ch/?labs.20130405

patterns stored in the pattern database. This will enhance
robustness because the config will be very simple. At the
same time, the pattern database will help maintaining the
field normalisation and the overview of the parsed
messages and can be recursively optimised for all
implemented filters.

To construct the pattern database, create a set of atoms grok
expressions, then construct the line expression referred by
the filter.

During the addition of more line parsers, some redundancy
can be eliminated by increasing the complexity of the grok
expression while maintaining good flexibility with the atom
expressions.

During the expression development process, use grokdebug
[3] to interactively test patterns. For the regex, use Rubular
[4] to interactively test the regex.

With time, it will become useful to customise. Buy [5] your
own environment and interact with grok using IRB [6].

Use a separate platform to syntactically test the filter-set
and pattern-db. Note: If you use CentOS, the rpm package
has some problems and will not start in test mode. Use the
same ELK version on OSX/Windows/Debian to test the
filters.

5. Example: Building the Fortigate Filter

The Logstash grok plugin automatically tags non matching
messages with the grokparsefailure tag. Monitor this tag
trend to find messages that are not captured by the filter.

Basically, the development pattern to use is:

1. Assure all messages from the Fortigate firewall are
correctly tagged

2. Set the correct filter
3. Create a first message parser
4. repeat until failure rate drops to around zero

messages
1. Add parsers for additional messages
2. Optimize patterns
3. Monitor with Kibana the grokparsefailure

trend

5.1. Patterns

Develop the pattern atoms, designing some expression
dedicated to grep a specific part of the log message.

Fortigate atoms parsers
FWFN_BASE %{SYSLOGTIMESTAMP} %
{IPORHOST:logsource}.*devname=%
{DATA:dev_name} device_id=%{DATA:dev_id}
log_id=%{NUMBER:log_id} type=%{DATA:type}
subtype=%{DATA:stype} pri=%{DATA:severity}
vd=%{WORD:vdom}
FWFN_SRCDST src=%{IP:src:ip} src_port=%
{NUMBER:src_port} src_int=%
{QUOTEDSTRING:src_intf} dst=%{IP:dst_ip}
dst_port=%{NUMBER:dst_port} dst_int=%
{QUOTEDSTRING:dst_intf}
FWFN_SN SN=%{NUMBER:sn} status=%{DATA:status}
policyid=%{NUMBER:pol_id}
FWFN_CNTR dst_country=%
{QUOTEDSTRING:dst_country} src_country=%

{QUOTEDSTRING:src_country}
FWFN_SVC service=%{DATA:service} proto=%
{NUMBER:proto} duration=%{NUMBER:duration}
sent=%{NUMBER:B_sent} rcvd=%{NUMBER:B_rcvd}
FWFN_MSG msg=%{QUOTEDSTRING:msg}
FWFN_TRAN dir_disp=%{DATA:direction}
tran_disp=%{DATA:trans_type} tran_sip=%
{IP:trs_ip} tran_sport=%{NUMBER:trs_port}

Then start to construct the line message parsers:

Fortigate message line matchers (Version 1
- Straight forward)
FWFN_VAR_01 %{FWFN_BASE} %{FWFN_SRCDST} %
{FWFN_SN} %{FWFN_CNTR} %{FWFN_SVC}
FWFN_VAR_02 %{FWFN_BASE} %{FWFN_SRCDST} %
{FWFN_SN} %{FWFN_CNTR} %{FWFN_SVC} %
{FWFN_MSG}
FWFN_VAR_03 %{FWFN_BASE} %{FWFN_SRCDST} %
{FWFN_SN} %{FWFN_CNTR} %{FWFN_TRAN} %
{FWFN_SVC}
FWFN_VAR_04 %{FWFN_BASE} %{FWFN_SRCDST} %
{FWFN_SN} %{FWFN_CNTR} %{FWFN_TRAN} %
{FWFN_SVC} %{FWFN_MSG}

You can quickly notice redundancy in the code. Use the
DRY principle and start recursively summarising the grok
expressions:

Fortigate message line matchers (Version 2
- Optimization step 1)
FWFN_BASE_2 %{FWFN_BASE} %{FWFN_SRCDST} %
{FWFN_SN} %{FWFN_CNTR}
FWFN_VAR_01 %{FWFN_BASE_2} %{FWFN_SVC}
FWFN_VAR_02 %{FWFN_BASE_2} %{FWFN_SVC} %
{FWFN_MSG}
FWFN_VAR_03 %{FWFN_BASE_2} %{FWFN_TRAN} %
{FWFN_SVC}
FWFN_VAR_04 %{FWFN_BASE_2} %{FWFN_TRAN} %
{FWFN_SVC} %{FWFN_MSG}

Round 2:

1. Fortigate message line matchers
(Version 3 – Optimization step 1)
FWFN_BASE_2 %{FWFN_BASE} %
{FWFN_SRCDST} %{FWFN_SN} %{FWFN_CNTR}

FWFN_VAR_01 %{FWFN_BASE_2} %{FWFN_SVC}
FWFN_VAR_02 %{FWFN_BASE_2} %{FWFN_SVC} %
{FWFN_MSG}
FWFN_VAR_03 %{FWFN_BASE_2} %{FWFN_TRAN} %
{FWFN_SVC}
FWFN_VAR_04 %{FWFN_BASE_2} %{FWFN_TRAN} %
{FWFN_SVC} %{FWFN_MSG}

Round 3:

Fortigate Message line matchers (Version 4
- Optimization step 1)
FWFN_VAR_01 %{FWFN_BASE_2}\s*(?:%
{FWFN_TRAN}|)\s*(?:%{FWFN_SVC}|)\s*(?:%
{FWFN_MSG}|)

Constantly check the grokparsefailure rate for any
potentially occurring uptrend. If this happens, something is
wrong in the summarisation and the filter does not work as
expected. In that case, go over the summarising process
again.

https://grokdebug.herokuapp.com/
http://rubular.com/
https://www.ruby-lang.org/en/
http://www.ruby-doc.org/stdlib-2.0/libdoc/irb/rdoc/IRB.html

6. Final Filter Version

After the grok-pattern optimisation, the match line in grok
filter can be reduced to a single line. This keeps the filter
configuration file simple and clean, helping to quickly
correct possible syntax errors.

filter {
 if "fortigate" in [tags] {
 mutate {
 add_tag => ["firewall"]
 remove_tag => ["fortigate"]
 replace => ["program",
"fortigate"]
 replace => ["severity", ""
]
 }
 grok {
 overwrite => ["message"]
 match => ["message" ,
"%{FWFN_VAR_01}"]
 }
 }
}

After some recursive improvements and a few hours of
tuning, the grokparsefailure rate drops to near zero. At this
stage, the filter is working correctly for most incoming

messages. A weekly review of the messages tagged with
grokparsefailure will be enough to capture the remaining
unparsed messages.

7. Why is This Important?

Mid-data interpretation may be a thankless job. The system
necessary to get that sort of interpretation done may be very
complex and, if not handled well, may become very
unstable. Maybe not for the software itself but for the
customisation.

A well-structured and documented configuration, increases
stability and flexibility and facilitates the integration of
plugins and the enhancement of the system.

8. External Links

[1] http://www.elasticsearch.org/overview/
[2] https://www.scip.chhttp://www.scip.ch/?labs.20130405
[3] https://grokdebug.herokuapp.com
[4] http://rubular.com
[5] https://www.ruby-lang.org/en/
[6] http://www.ruby-doc.org/stdlib-
2.0/libdoc/irb/rdoc/IRB.html

http://www.elasticsearch.org/overview/
https://www.scip.chhttp//www.scip.ch/?labs.20130405
https://grokdebug.herokuapp.com/
http://rubular.com/
https://www.ruby-lang.org/en/
http://www.ruby-doc.org/stdlib-2.0/libdoc/irb/rdoc/IRB.html

