
Mac OS X Memory Analysis: An Overview

Rocco Gagliardi
Defense Department, scip AG

roga@scip.ch
https://www.scip.ch

Marc Ruef (Editor)
Research Department, scip AG

maru@scip.ch
https://www.scip.ch

Keywords: Apple, False Positive, Forensic, Framework, Hacker, HTTP, Law, Mac, Malware,
Market

1. Preface

This paper was written in 2012 as part of a research project
at scip AG, Switzerland. It was initially published online at
https://www.scip.ch/en/?labs.20120719 and is available in
English and German. Providing our clients with innovative
research for the information technology of the future is an
essential part of our company culture.

2. Introduction

This article is an overview of current methods and tools for
volatile memory analysis of a Apple Mac OS X system;
additional references for each subject are listed. This is not
a guide for dumping or analysing memory.

The forensic analysis of a computer involves many
complex and delicate tasks. To make an accurate and
reliable copy of the data stored on hard disks, there are well
documented and reliable procedures. The reasons are
simple: the acquisition procedure is quite easy, so an expert
is not strictly required, and there are a plenty of
examination tools available on the market that can be used
to investigate the collected data. More complex and
unreliable is the acquisition of volatile memory.

The Random-Access Memory (RAM) is an area of the
computer which is used to store data while the computer is
working on it. A large amount of clear text sensitive
information resides only within the RAM, assuming that
the OS will prevent unauthorized access and that when the
computer is powered off the content will be unavailable.

It is quite obvious that we can loose evidence if we omit
volatile data during an acquisition procedure. Additionally,
a growing number of infections show us that the memory
content will be the only place where evidence can be found.

From a forensic perspective, RAM is extremely important,
because it gives an idea of what the computer was doing at
the time of analysis. With the increasing number of Apple
Macintosh computers in the industry, the investigation of
Mac OSX RAM content is becoming very important.

3. Acquisition

Most standards and best practice guidelines, such as the
“Computer Security Incident Handling Guide” from NIST
or RFC 3227 “Guidelines for Evidence Collection and
Archiving”, include procedures of gathering volatile data:
current network connections, running processes, users
sessions, kernel parameters, open files etc. The problem is
that to acquire data, some tools like netstat, lsof, ifconfig
must be executed. These tools collect only obvious data,
leaving most of the system’s memory unanalyzed.
Moreover, these tools are executed from user mode and
even if statically linked they can print unreliable data
because of a kernel level modification. The perfect tool for
collecting volatile data should not rely on an operating
system (see the Tribble PCI device, [Carrier2003]).

A memory acquisition procedure should be useful in
different environments so in most cases it relies on a
software solution, and, if well designed, just uses a very
short collection process, if possible, reduced to a single
command in order to minimize the impact on the machine.

Several methods for the acquisition of the memory of a
Mac OSX system may be used, all with some
problems/limitations. Following a list of currently most
used procedures some of them not specific for the Mac
world.

4. Kernel module to dump memory [Singh2006]

This method, implemented for example in
MacMemoryReader, uses a kernel extension to create
temporary, read-only /dev/mem and /dev/pmap devices.
/dev/mem provides the same functionality provided by
/dev/mem on other Unix operating systems and gives
access to physical memory of the following types, as
defined by EFI: “available”, Loader Code, Loader Data,
Bootstrap Code, Bootstrap Data, Runtime Code, Runtime
Data, and, optionally, “reserved”.

It does not allow access to memory ports or memory-
mapped I/O devices, so it cannot be used to write device
drivers.

Superuser access is required to load the extension. In
addition, since something is loaded in the memory, a
footprint is left in the memory itself and changes the state
of the acquired system.

5. Boot time argument [Singh2006]

As a trivial alternative to the kernel extension, it is possible
to use the kmem=1 boot-time argument. If kernel supports
the argument, this setting will reenable the kernel memory
device. Since is a boot-time argument, a reboot is required,
so it is useless in case acquisition of a running computer.

6. Direct Memory Access using Firewire [Boileau2006]

This method uses a “feature” of the Firewire spec (OHCI-
1394), that allows read/write access to physical memory
(via DMA) for external Firewire devices. As this is DMA,
the CPU/OS will not even know what’s going on, so may
work regardless of whether you have locked your screen; If
not mitigated, Mac OSX prior to Lion 10.7.2 was
vulnerable to this kind of attack; in Lion 10.7.2 it only
works if a user is logged in.

Due to the firewire bus limitation, only 2GB on memory
can be dumped, so with the growing memory size in
modern machines, this method may be limited.

With specific HW, Macs with only the new Thunderbolt
interface are also vulnerable. A summary of papers, attacks
and tools related to the Firewire DMA attack can be found
at Physical memory attacks via Firewire/DMA [1]

7. Cold boot attack [Haldermann2008]

Powering off a computer has the consequence of RAM
clearing, but not immediately! Research demonstrate that
without power, memory chips may retain values for a short
period of time (from seconds to minutes) giving the
possibilities to read the full memory content. Additionally,
if the chips are cooled, they may retain values for hours.

This is deadly for disk encryption products because they
rely on keeping master decryption keys in DRAM. Placing
the key in memory was thought to be safe because the
operating system protect them while running, and there was
no way to get rid of the operating system without cutting
power to the machine, which “everybody knew” would
cause the keys to be erased.

8. Collecting the sleepimage

If the computer if configured to go in sleep mode, the
content of the memory is saved to /var/vm/sleepimage for
future restore of the exact state; this file can be used to
analyze the memory. It is not a perfect image of the running
system, because a process is started to put the machine in
sleep-mode influencing the content itself, but a lot of
valuable information can still be collected.

9. Analysis

Having a memory dump is the first step, methods to extract
useful information from memory such as opened files,
detailed information about each process (start/stop …),
network status etc. are still needed.

Compared to Microsoft world, the Mac OSX tools are in an
prehistoric era. As stated in the the MacMemoryReader
Readme.txt,

There are currently very few tools to analyze
physical memory dumps from Mac OS X machines.
Hex editors, string extraction tools, search tools,
and file carvers are all useful for extracting data.

In addition, the memory can be dumped in different formats
(using different offsets), and this may make some
investigating tools useless.

For example, MacMemoryReader, the plug-and-play
dumper, dumps the data in Mach-O binary or raw-format,
while volafox (the analysis tool) requires the “linear”
format (for memory addressing mechanism, consult the
Intel Programmers Handbook), unless you checkout the
head volafox version.

Some information can be extracted from the mach-O dump
format using the command “string” and grepping for
interesting sequences like – as example – “Plongname”:
around this string the current logged username/password
can be found.

But this is a trial & error method; just dumping strings and
looking around may be useful but is prone to errors and
very time consuming.

10. Tools

Mac Memory Reader: Mac Memory Reader is an
easy to use command-line utility to capture the
contents of physical RAM on a suspect computer,
letting an investigator gather volatile state
information prior to shutting the machine down.
Results are stored in a Mach-O binary or raw-
format file for later off-line analysis by the
investigator. The “MacMemoryReader” can be
downloaded from here [2].
volafox: Kyeong-Sik Lee and the Korean Digital
Forensic Research Center have released Volafox, a
free and open-source tool to analyze Mac OS X
memory images. Volafox is based on work by
Matthieu Suiche and the Volatility memory
analysis framework. Volafox is the only open
source tool that can extract some memory
information automagically; running volafox against
a linear memory dump may extract following
information: os_version, machine_info,
mount_info, kern_kext_info, kext_info, proc_info,
syscall_info, net_info. “volafox” can be
downloaded from here [3] or checked out from
http://volafox.googlecode.com/svn/trunk/. The svn
checkout has the ability to read the
MacMemoryReader format.
system tools: The string functions manipulate
strings that are terminated by a null byte; can be
used to extract ASCII strings from the image.
Object file displaying tool command displays
specified parts of object files or libraries; can be
used to look at the mach-O export made with
MacMemoryReader.

http://www.hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation
http://download.atc-nycorp.com/utilities/MacMemoryReader_3.0.1.tar.gz
http://code.google.com/p/volafox/

Goldfish: Goldfish is a free MAC OS X live
forensic tool for use only by law enforcement. Its
main purpose is to provide an easy to use interface
to dump system RAM of a target machine via a
firewire connection. It then automatically extracts
the current user login password and any open AIM
conversation fragments that may be available. A
short presentation about Goldfish is available [4]

11. Summary

The methods and tools to analyze a Mac OSX memory
dump are still a work in progress; currently the only tool
that can extract useful information from a memory image is
“volafox”; the usage of filecarvers, string and grep for
known signatures is ineffiecient and may lead to false
positive.

Basically it’s possible to use following patterns:

1. MacMemoryReader -> mach-O dump ->
string/grep/otool -> some unorganized and
informal results

2. DMA memory dump -> volafox -> predefined set
of information

3. MacMemoryReader -> volafox -> predefined set of
information

12. References

[Singh2006] A.Singh, Mac OSX Internals: A
Systems Approach, Addison Wesley Professional
2006, Chapter 8 [5]
[Suiche2010] M.Suiche, Advanced Mac OSX
Physical Memory Analysis, Blackhat 2010 [6]
[Haldermann2008] Haldermann et al, Lest we
remember: Cold Boot Attacks on Encryptions Keys
[7]
[Ligh2011] S.Adair; B.Hartstein; M.Richard,
Malware Analyst’s Cookbook and DVD: Tools and
Techniques for Fighting Malicious Code, Wiley
2011 [8]
[Boileau2006] A.Boileau, Hit by a Bus: Physical
Access Attacks with FireWire [9]
[Carrier2003] B.Carrier; J.Grand, A Hardware-
Based Memory Acquisition Procedure for Digital
Investigations [10]

13. Sources

Mac OS X Hacker’s Handbook [11]
Mac OSX Internals: A Systems Approach [12]
Mac OSX Internals – Blog [13]
About the security content of OS X Lion v10.7.2
and Security Update 2011-006 [14]

Physical memory attacks via Firewire/DMA [15]
Adventures with Daisy in Thunderbolt-DMA-land:
Hacking Macs through the Thunderbolt interface
[16]
NIST SP 800-61 Rev. 2 – DRAFT – Computer
Security Incident Handling Guide [17]
Guidelines for Evidence Collection and Archiving
[18]
Intel 64 and IA-32 Architectures Software
Developer Manuals [19]
forensicswiki.org [20]

{$t:Mac OS X Memory Analysis, an
overview,$a:rcc,$v:1}

14. External Links

[1] http://www.hermann-uwe.de/blog/physical-memory-
attacks-via-firewire-dma-part-1-overview-and-mitigation
[2] http://download.atc-
nycorp.com/utilities/MacMemoryReader_3.0.1.tar.gz
[3] http://code.google.com/p/volafox/
[4] http://cci.ucd.ie/files/images/Goldfish-web.pdf
[5] http://osxbook.com/book/bonus/chapter8/kma/
[6] http://www.msuiche.net/2010/02/05/blackhat-dc-2010-
mac-os-x-physical-memory-analysis/
[7] https://citp.princeton.edu/research/memory/
[8] http://www.amazon.com/Malware-Analysts-Cookbook-
DVD-Techniques/dp/0470613033
[9] http://storm.net.nz/static/files/ab_firewire_rux2k6-
final.pdf
[10] http://www.digital-evidence.org/papers/tribble-
preprint.pdf
[11] http://www.amazon.com/The-Hackers-Handbook-
Charlie-Miller/dp/0470395362/ref%3Dsr_1_1?
ie=UTF8&qid=1342086760&sr=8-
1&keywords=mac+osx+hackers+handbook
[12] http://www.amazon.com/Mac-OS-Internals-Systems-
Approach/dp/0321278542/ref%3Dpd_sim_b_2
[13] http://osxbook.com/blog
[14] http://support.apple.com/kb/HT5002
[15] http://www.hermann-uwe.de/blog/physical-memory-
attacks-via-firewire-dma-part-1-overview-and-mitigation
[16] http://www.breaknenter.org/2012/02/adventures-with-
daisy-in-thunderbolt-dma-land-hacking-macs-through-the-
thunderbolt-interface/
[17] http://csrc.nist.gov/publications/PubsDrafts.html#SP-
800-61-Rev.%202
[18] http://www.ietf.org/rfc/rfc3227.txt
[19] http://www.intel.com/content/www/us/en/processors/ar
chitectures-software-developer-manuals.html/
[20] http://www.forensicswiki.org/wiki/Tools%3AMemory
_Imaging

http://cci.ucd.ie/files/images/Goldfish-web.pdf
http://osxbook.com/book/bonus/chapter8/kma/
http://www.msuiche.net/2010/02/05/blackhat-dc-2010-mac-os-x-physical-memory-analysis/
https://citp.princeton.edu/research/memory/
http://www.amazon.com/Malware-Analysts-Cookbook-DVD-Techniques/dp/0470613033
http://storm.net.nz/static/files/ab_firewire_rux2k6-final.pdf
http://www.digital-evidence.org/papers/tribble-preprint.pdf
http://www.amazon.com/The-Hackers-Handbook-Charlie-Miller/dp/0470395362/ref%3Dsr_1_1?ie=UTF8&qid=1342086760&sr=8-1&keywords=mac+osx+hackers+handbook
http://www.amazon.com/Mac-OS-Internals-Systems-Approach/dp/0321278542/ref%3Dpd_sim_b_2
http://osxbook.com/blog
http://support.apple.com/kb/HT5002
http://www.hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation
http://www.breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-dma-land-hacking-macs-through-the-thunderbolt-interface/
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-61-Rev.%202
http://www.ietf.org/rfc/rfc3227.txt
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://www.forensicswiki.org/wiki/Tools%3AMemory_Imaging
http://www.hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation
http://download.atc-nycorp.com/utilities/MacMemoryReader_3.0.1.tar.gz
http://code.google.com/p/volafox/
http://cci.ucd.ie/files/images/Goldfish-web.pdf
http://osxbook.com/book/bonus/chapter8/kma/
http://www.msuiche.net/2010/02/05/blackhat-dc-2010-mac-os-x-physical-memory-analysis/
https://citp.princeton.edu/research/memory/
http://www.amazon.com/Malware-Analysts-Cookbook-DVD-Techniques/dp/0470613033
http://storm.net.nz/static/files/ab_firewire_rux2k6-final.pdf
http://www.digital-evidence.org/papers/tribble-preprint.pdf
http://www.amazon.com/The-Hackers-Handbook-Charlie-Miller/dp/0470395362/ref%3Dsr_1_1?ie=UTF8&qid=1342086760&sr=8-1&keywords=mac+osx+hackers+handbook
http://www.amazon.com/Mac-OS-Internals-Systems-Approach/dp/0321278542/ref%3Dpd_sim_b_2
http://osxbook.com/blog
http://support.apple.com/kb/HT5002
http://www.hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation
http://www.breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-dma-land-hacking-macs-through-the-thunderbolt-interface/
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-61-Rev.%202
http://www.ietf.org/rfc/rfc3227.txt
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://www.forensicswiki.org/wiki/Tools%3AMemory_Imaging

